
7350: TOPICS IN FINITE-DIMENSIONAL ALGEBRAS

RICHARD VALE

Abstract. These are the notes from a course taught at Cornell in Spring 2009. They are a record of what

was covered in the lectures. Many results were copied out of books and other sources, as noted in the text.

The course had three parts: (1) An introduction to finite-dimensional algebras (lectures 1-12) (2) Gabriel’s

Theorem (lectures 13-16) (3) Auslander-Reiten theory (lectures 17-27).

Thanks to C. H. Lam, S. Luo, J. Rajchgot and K. Wong for checking the notes for mistakes.

1. Lecture 1

1.1. Introduction. This course is about finite-dimensional algebras. An algebra is a vector space in which

you can multiply the vectors (a formal definition will be given below). Alternatively, an algebra is a ring

which happens to be a vector space.

We work over a field k, which we usually take to be algebraically closed of characteristic zero, and usually

just assume that k = C.

List of references: (more to be added)

[ARS97], [ASS06] are good books on finite-dimensional algebras; [Rot09] is a good reference for homological

algebra; [Bea99] is good for basic ring theory (eg. Jacobson radical); [MR01] is a good reference for ring

theory in general; [CB] is an extremely good set of notes on quivers available online, which will be used for

some parts of the course. See the same webpage for other sets of notes which are also worth reading.

Why study finite-dimensional algebras? Answer: they are popular and interesting. We are really interested

in the module categories of such algebras, not the algebras themselves. It turns out that a lot of interesting

abelian categories are actually the category of modules over some finite-dimensional algebra A. For example

the category O(g) where g is a semisimple complex Lie algebra.

1.2. Basic definitions.

Definition 1.1. A k–algebra is a k–vector space A together with two linear maps

m : A⊗k A → A

η : k → A
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satisfying the axioms

m(m⊗ id) = m(id⊗m) : A⊗A⊗A → A

m(η ⊗ id) = id : A = k ⊗k A → A

m(id⊗ η) = id : A = A⊗k k → A.

In more sensible language, m is a bilinear map from A×A to A, η is an element η(1) ∈ A, and if we write

m(a⊗ b) = ab and η(1) = 1A, then the axioms say that

a(bc) = (ab)c

a1A = a

1Aa = a

for all a, b, c ∈ A.

Here are some examples.

• C = R⊕ Ri is an R–algebra.

• Mn(k) = {n× n matrices over k} is a k–algebra.

• k[x1, x2, . . . , xn].

• kG, G a group.

Definition 1.2 (Morphisms). A morphism f : A → B of algebras is a linear map f : A → B such that

f(a1a2) = f(a1)f(a2) for all a1, a2 ∈ A and f(1A) = 1B. In terms of our fancier definition, these would be

written fmA = mB(f ⊗ f) and fηA = ηB.

Definition 1.3 (Ideals). A left ideal of A is a subspace I ⊂ A such that aI ⊂ I for all a ∈ A and a right

ideal is a subspace I such that Ia ⊂ I for all a ∈ A. A two-sided ideal is a subspace which is both a left and

a right ideal.

If I is a two-sided ideal then the quotient A/I becomes an algebra with the appropriate definition of

multiplication and unit element.

Definition 1.4 (Product). If A and B are algebras then A × B denotes the vector space A ⊕ B with the

product

(a1, b1)(a2, b2) = (a1a2, b1b2)

and identity (1A, 1B). This is a product in the category of algebras (exercise).

Definition 1.5 (Tensor product). If A and B are algebras then A⊗B denotes the vector space A⊗k B with

the product

(a1 ⊗ b1)(a2 ⊗ b2) = a1a2 ⊗ b1b2

and identity 1A ⊗ 1B.
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Definition 1.6 (Opposite). If A is an algebra then Aop is the algebra with underlying vector space A and

multiplication mAop(a1 ⊗ a2) = mA(a2 ⊗ a1).

Definition 1.7 (Free algebra). If V is a vector space, define

T (V ) =
∞⊕

i=0

(V ⊗ V ⊗ · · · ⊗ V )︸ ︷︷ ︸
i copies

where the i = 0 component is just k. The vector space T (V ) can be equipped with a multiplication given on

the obvious basis by concatenation. This is a well-defined algebra. If v1, v2, . . . , vn is a basis of V then T (V )

has a basis consisting of all words in the vi. It is known as the tensor algebra of V or the free algebra on

v1, . . . , vn and is also denoted k〈v1, v2 . . . , vn〉.

Exercise 1.8. (1) Show that T (V ) is a well-defined algebra.

(2) Show that every algebra can be written T (V )/I for some vector space V and some two-sided ideal I

of T (V ).

1.3. Modules.

Definition 1.9. If A is a k–algebra, a left A–module is a vector space M together with a linear map

α : A⊗k M → M such that

α(mA ⊗ id) = α(id⊗ α).

That is, a(bn) = (ab)n for all a, b ∈ A and all n ∈ M , where an denotes α(a⊗ n).

If M , N are left A–modules, then a module map f : M → N is a linear map which commutes with the

A–actions, in the sense that f(an) = af(n) for all a ∈ A and all n ∈ M .

There is an analogous definition of right A–module.

Definition 1.10. We denote by

A−Mod

the category of all left A–modules and by

A−mod

the category of all finite-dimensional left A–modules.

We also use the notation Mod−A and mod−A for right A–modules.

Notice that mod− A is equivalent to Aop −mod. Also, there is the notion of A− A–bimodule, which is

the same thing as a left module for A⊗Aop. We usually think of this as a vector space with a left and right

action of A such that the two actions commute with each other. We leave it to the reader to make a proper

definition of bimodule.

The category A −mod is the main object of study in this course. By convention, when we talk about a

“module” without qualification, we mean a finite-dimensional left module.
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Surprisingly, there is quite a lot to be said about A−mod for a general finite-dimensional algebra A. This

will be explained in the next few lectures.

It is assumed that you have taken a course in homological algebra and are familiar with the notion of

submodule, quotient, kernels, cokernels, direct sums, and short exact sequences.

From now on, all algebras are assumed to be finite-dimensional except when stated otherwise.

1.4. Simple modules.

Definition 1.11. A module M is called simple if the only submodules of M are 0 and M .

For example, Cn is a simple Mn(C)–module because given any nonzero vector, you can find a matrix

which takes it to any other nonzero vector.

Every module can be built up out of simple modules in the following sense

Definition 1.12. Let M be a module. A composition series of M is a sequence of submodules

0 = M0 (M1 (M2 ( · · · (Mn = M

such that the modules Mi/Mi−1 are simple for all i.

Every module has a composition series. To see this, given a finite-dimensional M , let M1 be a nonzero

submodule of M of smallest possible dimension. Then M1 is simple. Now, if M1 6= M , let M ′
2 ⊂ M/M1 be

a nonzero submodule of smallest possible dimension. Let M2 ⊂ M be a submodule such that M ′
2 = M2/M1.

Continue like this, and you will have constructed a composition series of M . (As an exercise, make this proof

precise).

Definition 1.13. If M is a module and

0 = M0 (M1 (M2 ( · · · (Mn = M

is a composition series, then n is called the length of the series and the Mi/Mi−1 are called the composition

factors of the series.

In fact, the length and the isomorphism classes of the composition factors are uniquely determined by M .

This is the content of our first important theorem.

2. Lecture 2

2.1. The Jordan-Hölder Theorem.

Definition 2.1. If M is a module, define the length `(M) to be the minimum length of a composition series

of M .

Lemma 2.2. If N is a proper submodule of M , then `(N) < `(M).
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Proof. Let

0 = M0 (M1 (M2 ( · · · (Mn = M

be an arbitrary composition series for M . Then

0 = N ∩M0 ⊂ N ∩M1 ⊂ N ∩M2 ⊂ · · · ⊂ N ∩Mn = N

is a series of submodules of N . The factors of this series are N ∩ Mi/N ∩ Mi−1. The natural map N ∩
Mi/N ∩ Mi−1 → Mi/Mi−1 is an injection, and therefore, since Mi/Mi−1 is simple, we have that either

N ∩Mi/N ∩Mi−1 = Mi/Mi−1 is simple, or else N ∩Mi/N ∩Mi−1 = 0. It suffices to show that there must

be at least one i with N ∩Mi/N ∩Mi−1 = 0. To see this, observe that

dim(N) =
∑

i

dim(N ∩Mi/N ∩Mi−1).

If N ∩ Mi/N ∩ Mi−1 = Mi/Mi−1 for all i, then we get dim(N) = dim(M) and so N cannot be a proper

submodule. ¤

Theorem 2.3 (Jordan-Hölder Theorem). Any two composition series of a module M have the same length

and the same composition factors, up to isomorphism.

Proof. This is proved by induction on `(M). If `(M) = 1 then M is simple. The theorem is obvious in this

case.

Suppose the result is true for all modules N with `(N) < `(M). Suppose we have two composition series

of M .

0 = M0 (M1 ( · · · (Mn−1 (Mn = M

and

0 = K0 ( K1 ( · · · ( Kp−1 ( Kp = M.

If Mn−1 = Kp−1 then Lemma 2.2 allows us to apply the induction hypothesis to Mn−1. We get n−1 = p−1

and that the composition factors of the two series up to the (n− 1)th place are the same. Since M/Mn−1 =

M/Kp−1, this is enough to complete the induction step.

Now suppose Mn−1 6= Kp−1. Then Mn−1+Kp−1
Mn−1

is a nonzero submodule of M/Mn−1 (it is an exercise to

check that it can’t be zero). Since M/Mn−1 is simple, we have Mn−1+Kp−1
Mn−1

= M/Mn−1. We get

Mn

Mn−1
=

Mn−1 + Kp−1

Mn−1

∼= Kp−1

Mn−1 ∩Kp−1

and similarly
Kp

Kp−1
=

Mn−1 + Kp−1

Kp−1

∼= Mn−1

Mn−1 ∩Kp−1
.

Now let

0 = L0 ( L1 ( · · · ( Lt = Mn−1 ∩Kp−1
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be a composition series of Mn−1 ∩Kp−1. This can be extended to a composition series for Mn−1 and to a

composition series for Kp−1. The composition factors of the series

0 = L0 ( L1 ( · · · ( Lt = Mn−1 ∩Kp−1 ( Mn−1

are {Li/Li−1} and Mn−1/Mn−1 ∩Kp−1, while the composition factors of

0 = L0 ( L1 ( · · · ( Lt = Mn−1 ∩Kp−1 ( Kp−1

are {Li/Li−1} and Kp−1/Mn−1 ∩Kp−1. By the induction hypothesis, the composition factors of Kp−1 and

Mn−1 are uniquely determined up to isomorphism. Therefore, the composition factors of

0 = M0 (M1 ( · · · (Mn−1 (Mn = M

are {Li/Li−1}, Mn−1/(Mn−1 ∩Kp−1) and M/Mn−1
∼= Kp−1/(Mn−1 ∩Kp−1), while the composition factors

of the series

0 = K0 ( K1 ( · · · ( Kp−1 ( Kp = M

are {Li/Li−1}, Kp−1/(Mn−1 ∩Kp−1) and M/Kp−1
∼= Mn−1/(Mn−1 ∩Kp−1). Thus, these two series have

the same composition factors up to isomorphism, which proves the induction step. ¤

The Jordan-Hölder Theorem shows that every module can be built up by taking iterated extensions of

simple modules. It is also useful to understand the morphisms between simples. Over an algebraically closed

field, this is very easy.

Lemma 2.4 (Schur’s Lemma). If S1 and S2 are simple modules over a finite-dimensional C–algebra A then

HomA(S1, S2) =




C if S1

∼= S2

0 otherwise

Proof. Let f : S1 → S2. Then if f 6= 0, then ker(f) is a proper submodule of S1, so ker(f) = 0. Also,

im(f) is a nonzero submodule of S2, so im(f) = S2. Therefore, f is bijective, so is an isomorphism. If

g : S1 → S2 is another nonzero morphism, then g−1f : S1 → S1 is an isomorphism. Since we are working

with finite-dimensional modules and our field is algebraically closed, this map must have an eigenvalue λ.

Then the λ–eigenspace of g−1f is a nonzero submodule of S1 and therefore equals S1. So f = λg. ¤

3. Lecture 3

Another kind of module which can serve as a building block for all modules are the indecomposable

modules. These are more general than simple modules, but the way in which every module is built up from

indecomposables is much simpler.
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3.1. Indecomposable modules.

Definition 3.1. A module M is called indecomposable if whenever M = N1 ⊕ N2 for some submodules

N1, N2, we have N1 = 0 or N2 = 0.

Every simple module is indecomposable, but not-vice versa. For example, let A = C[t]/(t2). Let M = A.

Then M is not simple because tM is a proper nonzero submodule of M .

Exercise 3.2. Show that M is indecomposable.

Theorem 3.3 (Krull-Schmidt Theorem). Every module M can be written

M = M1 ⊕M2 ⊕ · · · ⊕Mn

where the Mi are indecomposable. Furthermore, if

M1 ⊕M2 ⊕ · · · ⊕Mn
∼= N1 ⊕N2 ⊕ · · · ⊕Np

where the Ni are indecomposable, then n = p and the Mi are isomorphic to the Nj, in some order.

The existence part of the theorem is very easy to prove (do it now as an exercise). The uniqueness part is

surprisingly difficult. We prove it using three lemmas, following the argument in [Bea99]. The first of these

lemmas is very useful in its own right.

Lemma 3.4 (Fitting’s Lemma). A module M is indecomposable if and only if every endomorphism of M

is either invertible or else nilpotent.

Proof. If every endomorphism of M is either a unit (another name for an invertible element) or nilpotent,

then suppose M = N1 ⊕N2 with N1, N2 6= 0. Then let

N1

i1 // M
π1 // N1

N2

i2 // M
π2 // N2

denote the inclusion and projection maps. Then i1π1 and i2π2 are both non-nilpotent endomorphisms of M ,

so they are invertible. But i1π1i2π2 = 0, a contradiction.

Conversely, suppose M is indecomposable. Let f ∈ EndA(M). Then

M ⊃ Im(f) ⊃ Im(f2) ⊃ · · ·

is a descending chain of submodules of M . If Im(fn) = 0 for some n, then f is nilpotent. If not, then the

chain of submodules must still stabilise at some point, since M is finite-dimensional. So there is some large

enough n so that

Im(fn) = Im(fn+1) = Im(fn+2) = · · ·
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forever. In particular, Im(fn) = Im(f2n).

Now let x ∈ M . Then fn(x) = f2n(z) for some z, so x−fn(z) ∈ ker(fn). Therefore, x ∈ Im(fn)+ker(fn),

and so Im(fn)+ker(fn) = M . By dimension, we must have M = Im(fn)⊕ker(fn). But M is indecomposable,

so either Im(fn) = 0 or Im(fn) = M . We are already assuming f is not nilpotent, so Im(fn) = M , Therefore,

det(fn) 6= 0 and so det(f) 6= 0 and therefore f is an isomorphism. ¤

Remark 3.5. There are two aspects of the above argument that we will use a lot. One is the descending

chain condition. This says that if

M ⊃ M1 ⊃ M2 ⊃ M3 ⊃ · · ·

is a descending chain of submodules of a module M , then there exists n such that Mn = Mn+1 = · · · . This

is true for any finite-dimensional module. In general, modules over a ring R which satisfy the descending

chain condition are called Artinian. We will often use Artinianness in our arguments, partly because it is

helpful in dealing with more general situation, and partly because most of the arguments in this course are

taken from books in which modules are not necessarily assumed to be finite-dimensional.

We also used the fact that det(f) 6= 0 implies that f is an isomorphism. Having access to ordinary linear

algebra makes a lot of proofs a lot easier when dealing with finite-dimensional modules, and we will regularly

use things like this.

Lemma 3.6. If M is an indecomposable module and λi ∈ EndA(M) and
∑n

i=1 λi is invertible, then one of

the λi must be invertible.

Proof. The proof is by induction on n. If n = 1 there is nothing to prove. If u = λ1 + · · ·+ λn is invertible,

then u−1λ1 + · · ·+u−1λn = 1 and so u−1λ2 + · · ·+u−1λn = 1−u−1λ1. If u−1λ1 is a unit, then so is λ1 and

we are done. If not, then u−1λ1 is nilpotent and so 1− u−1λ1 is a unit, and we are done by induction. ¤

Lemma 3.7. If M, A,B are modules and f : M ⊕ A → M ⊕ B is an isomorphism and πMfiM is an

isomorphism, where iM : M → M ⊕ A is the inclusion and πM : M ⊕ B → M is the projection, then A is

isomorphic to B.

Proof. Write elements of M ⊕A as column vectors ( µ
α ) and similarly for M ⊕B. Then f may be written as

a matrix

f =


a b

c d




where c : M → B and b : A → M . The hypothesis says that a : M → M is an isomorphism, and so is f . We

wish to show that d is an isomorphism. Write

a b

c d


 =


 1 0

ca−1 1





a b

0 d− ca−1b



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The map
(

1 0
ca−1 1

)
is an isomorphism; its inverse is

(
1 0

−ca−1 1

)
. Therefore,

(
a b
0 d−ca−1b

)
is also an isomorphism.

Regarding this as a block matrix and taking its determinant, we get det(a) det(d− ca−1b) 6= 0 and therefore

det(d− ca−1b) 6= 0. So d− ca−1b : A → B is the desired isomorphism. ¤

3.2. Proof of the Krull-Schmidt Theorem. First, to show that every module is a finite sum of indecom-

posables, use induction on the length. If `(M) = 1 then M is simple, so indecomposable. If `(M) > 1 then

either M is indecomposable or else M = N1⊕N2 with N1, N2 proper submodules. Then `(N1), `(N2) < `(M)

and we are done by induction.

Now suppose Mi, Ni are indecomposable modules and

ϕ : M1 ⊕ · · · ⊕Mk → N1 ⊕ · · · ⊕N`

is an isomorphism. Let ir be the inclusion of Mr into the direct sum of the Mi and let πr be the projection

from ⊕Mi onto Mr. Similarly, let jr be the inclusion of Nr into ⊕Ni and let pr be the projection.

For r = 1, we have

idM1 = π1i1 = π1

(
ϕ−1

∑̀
r=1

jrprϕ

)
i1 =

∑̀
r=1

π1ϕ
−1jrprϕi1.

Since M1 is indecomposable, we may apply Lemma 3.6 and conclude that one of the π1ϕ
−1jrprϕi1 must be

invertible. This implies that the short exact sequence

0 // M1

prϕi1 // Nr
// cok(prϕi1) // 0

is split, a splitting map being (π1ϕ
−1jrprϕi1)−1π1ϕ

−1jr : Nr → M1. We conclude that Nr
∼= M1 ⊕

cok(prϕi1). But Nr is indecomposable and M1 6= 0, so M1
∼= Nr. Relabel so that r = 1, then M1

∼= N1, an

isomorphism being given by p1ϕi1. Lemma 3.7 now implies that M2 ⊕ · · · ⊕Mk
∼= N2 ⊕ · · · ⊕ N`, and the

proof may now be completed by induction on, say, k. (Yes, I know that k also denotes the base field, and I

really don’t care.)

Remark 3.8. The Krull-Schmidt Theorem says that, to understand the entire module category, we only

need to understand the indecomposable modules and the maps between them.

3.3. Radicals. Now we introduce the Jacobson radical, which is something from ring theory. We again

follow the beautiful treatment of this subject in [Bea99]. First, we define a radical in general via two simple

axioms.

In this section, R can be any ring.

Definition 3.9. A radical is a way of choosing, for every left R–module RM , a submodule τ(M) satisfying

the following two properties.

• If f : M → N then f(τ(M)) ⊂ τ(N).

• For all M , τ(M/τ(M)) = 0.
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Proposition 3.10. Basic properties:

(1) For all M , τ(R)M ⊂ τ(M).

(2) τ(R) is a two-sided ideal of R.

Proof. For the first part, let m ∈ M and define f : R → M by f(r) = rm. Then f(τ(R)) = τ(R)m ⊂ τ(M).

For the second part, τ(R) is automatically a left ideal because it is a left R–submodule of R by definition.

The first part also shows that it is a right ideal, if we take M = R. ¤

Proposition 3.11. Let F be a class of R–modules. Define

radF (M) =
⋂

X∈F
f :M→X

ker(f).

Then radF is a radical. Furthermore, every radical is of the form radF for some F .

Proof. It is an exercise to show that radF is a radical.

Now suppose τ is a radical. We claim that τ = radF where F = {X : τ(X) = 0}. To see this, let M

be a module. If x ∈ τ(M) and X ∈ F and f : M → X then f(x) ∈ τ(X) = 0 so x ∈ ker(f). Therefore,

τ(M) ⊂ radF (M). Conversely, suppose x ∈ radF (M). Take f to be the quotient map M → M/τ(M). Then

x ∈ ker(f) and so x ∈ τ(M). So radF (M) ⊂ τ(M) as required. ¤

4. Lecture 4

4.1. The Jacobson radical. The only radical we care about in this course is radF where F is the class of

all simple modules. This is called the Jacobson radical. It is the intersection of the kernels of all maps from

M to a simple module. Being the kernel of such a map is equivalent to being a maximal proper submodule

(usually just called a maximal submodule). Therefore, we have the following definition.

Definition 4.1. Let M be an R–module. The Jacobson radical (or just radical) of M is the submodule

J(M) = rad(M) =
⋂

(maximal submodules of M).

By definition, the radical has to be a proper submodule unless M = 0. Also, the radical can be zero. This

happens for example if 0 is a maximal submodule of M .

Definition 4.2. An R–module M is semisimple if rad(M) = 0.

Proposition 4.3. If M is a finite-dimensional module over an algebra R, then M is semisimple ⇐⇒ M

is a direct sum of simple modules.

Proof. If M = S1⊕S2⊕· · ·⊕Sn with Si simple, then define fi : M → Si to be the projection onto Si. Then

rad(M) ⊂ ∩n
i=1 ker(fi) = 0.
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Conversely, if rad(M) = 0 then we may observe that there are finitely many maps f1, f2, . . . , fn from M

to a simple module with ∩n
i=1 ker(fi) = 0. Indeed, we can find a chain

ker(f1) ) ker(f1) ∩ ker(f2) ) ker(f1) ∩ ker(f2) ∩ ker(f3) ) · · ·

which descends strictly at each step. Because M is finite-dimensional, we get ∩n
i=1 ker(fi) = 0. Choose

f1, . . . , fn such that this holds, and such that n is as small as possible. In particular, ker(fi) 6= M for all i.

Suppose fi : M → Si.

Now define

M → S1 ⊕ S2 ⊕ · · · ⊕ Sn

by m 7→ (f1(m), f2(m), . . . , fn(m)). This is injective because ∩i ker(fi) = 0. To show that it is surjective,

observe that for each i, ker(fi) + ∩j 6=i ker(fj) = M . This is true because ker(fi) is a maximal submodule

and ∩j 6=i ker(fj) 6= 0 by choice of n.

Now the proof can be completed by applying the Chinese remainder theorem which says that if K1,K2, . . . , Kn

are submodules of a module M and Ki + ∩j 6=iKj = M for all i, then the natural map

M

K1 ∩K2 ∩ · · · ∩Kn
→ M

K1
⊕ M

K2
⊕ · · · ⊕ M

Kn

is surjective. This can be proved by induction on n. ¤

4.2. Chracterisations of J(R) for a ring R. Regarding a ring R as a left R–module, we have the following

characterisations of the Jacobson radical J(R) = rad(R).

Theorem 4.4.

J(R) =
⋂

(maximal left ideals of R) (1)

=
⋂

(left annihilators of simple left R–modules) (2)

= {x ∈ R : 1− ax has a left inverse for all a ∈ R} (3)

= The largest two-sided ideal I of R such that 1− x is a unit for all x ∈ I (4)

Proof. First, we show that (1) is equivalent to (2). The left annihilator of an R–module M is ann(M) :=

{x ∈ R : xm = 0 for all m ∈ M}. It is a two-sided ideal of R. If x belongs to the left annihilator of every

simple left R–module, let m be a maximal left ideal of R. Then R/m is a simple left R–module and so

x ∈ ann(R/m). Therefore, x = x.1 ∈ m, so (2) ⊂ (1). Conversely, if x is in every maximal left ideal, then

x ∈ J(R), which is a two-sided ideal by Proposition 3.10, so xa ∈ J(R) for all a ∈ R. Now let S be a simple

R–module. Let s ∈ S, s 6= 0. Define f : R → S by f(r) = rs. Then x ∈ ker(f) so xs = 0. Furthermore, for

every a ∈ R, xa ∈ ker(f) so xas = 0. Therefore, xRs = 0. But Rs = S since S is simple. So x ∈ ann(S).

Therefore, (1) = (2).

To show that (3) is equivalent to (1) or (2), first suppose that x ∈ J(R) and a ∈ R. Then ax ∈ J(R) and

since R(1− ax) + Rax = R, we get R(1− ax) + J(R) = R. Write M = R/R(1− ax). Then J(R)M = M .
11



But by the axioms for a radical, J(R)M ⊂ J(M), and so M ⊂ J(M). We have already remarked that this is

impossible unless M = 0. Therefore, R = R(1− ax). So there is some b ∈ R with 1 = b(1− ax). Therefore,

J(R) ⊂ (3). Conversely, suppose x ∈ R and for all a ∈ R there exists b ∈ R with b(1− ax) = 1. If x /∈ J(R)

then there is a maximal left ideal I of R with x /∈ I. Then I + Rx = R and so there is y ∈ I and a ∈ R

with y + ax = 1, so y = 1− ax ∈ I. Therefore, by = b(1− ax) = 1 ∈ I. So I = R which contradicts that I

is supposed to be a proper ideal. Therefore, (3) ⊂ J(R) and so (3) = J(R).

To show that (4) is equivalent to the others, first we note that if x ∈ J(R) then x ∈ (3) and so 1− x has

a left inverse b. So b(1− x) = 1. We want to show that (1− x)b = 1. To see this, we have b− bx = 1 which

implies −bx = 1− b. Now, −bx ∈ J(R) and so 1− (1− b) has a left inverse c, so cb = 1. Now

1− x = cb(1− x) = c · 1 = c

and therefore (1−x)b = 1. So 1−x is a unit. This shows that J(R) is an ideal of R such that 1−x is a unit

for all x ∈ J(R). We must now show that it contains every other two-sided ideal of R with this property.

To this end, let I be a two-sided ideal of R such that 1 − x is a unit for all x ∈ I. Then if x ∈ I, suppose

there is a maximal left ideal M of R with x /∈ M . Then M + Rx = R. So 1 = ax + m for some a ∈ R

and some m ∈ M . So m = 1 − ax. But ax ∈ I, so 1 − ax is a unit. Therefore, m is a unit and 1 ∈ M ,

a contradiction since M is supposed to be a proper ideal. Therefore, x ∈ M and so I ⊂ J(R). This shows

that (4) is well-defined and equals J(R). ¤

Note that (4) is left-right symmetric. Therefore, we could replace “left” by “right” in (1), (2) and (3) and

the theorem would still be true. This gives us three more characterisations of the Jacobson radical for free.

In this course, the following proposition will be useful to us.

Proposition 4.5. Let A be a finite-dimensional algebra. Then the Jacobson radical of A is the largest

two-sided ideal I of A such that every x ∈ I is nilpotent.

Proof. If I is an ideal of A such that every x ∈ I is nilpotent then let x ∈ I. Then xn = 0 for some n and so

(1− x)(1 + x + x2 + · · ·+ xn−1) = 1 = (1 + x + x2 + · · ·+ xn−1)(1− x).

So 1− x is invertible for all x ∈ I. Therefore, I ⊂ J(A) by (4) above.

Now, if x ∈ J(A) then consider the following chain of left ideals of A

A ⊃ Ax ⊃ Ax2 ⊃ · · ·

This must stabilise and so there exists an n with Axn = Axn+1 = · · · = Ax2n. Therefore, there is a ∈ A

with xn = ax2n, and so (1− axn)xn = 0. But 1− axn is invertible since axn ∈ J(R), so xn = 0. ¤

Examples 4.6. If A is a commutative finite-dimensional algebra then J(A) =
⋂

(prime ideals of A) =

{nilpotent elements of A}.
12



If A is a finite-dimensional algebra and M is an indecomposable A–module then EndA(M) is a finite-

dimensional algebra, every element of which is either nilpotent or a unit (see Lemma 3.6). Using this, it is

easy to see that the nilpotent elements form an ideal (thanks Shisen for pointing this out). This ideal must

be the Jacobson radical.

4.3. Projective modules. Because every module has a projective resolution, it makes sense to look at

projective modules. Recall the definition:

Definition 4.7. A module P is called projective if for all modules M,N and surjections M → N → 0, if

f : P → N then there exists a map P → M making the following diagram commute.

P

~~}}
}}

}}
}}

f

²²
M // N // 0

Being projective is equivalent to being a direct summand of a free module. In the finite-dimensional case,

all modules are finitely-generated and so P is a projective A–module if and only if there is some n with

A⊕n = P ⊕Q for some Q.

Not every module is projective in general. However, over a finite-dimensional algebra we can always find

a “best approximation” to a given module by a projective module.

Definition 4.8. If M is an A–module, a projective cover of M is a projective module P together with a

surjection P ³ M such that if Q is any other projective module and Q ³ M is a surjection then there exists

a surjection Q ³ P making the following diagram commute.

Q

~~~~~~
~~

~~
~~

²²²²
P // // M

Theorem 4.9. Every A–module has a projective cover.

Proof. First, if M is an A–module then if m1, . . . ,mn is a basis of M then A⊕n ³ M via (a1, . . . , an) 7→
∑

aimi. So there exists a projective Q with a surjection π : Q ³ M . Now let

Ω = {P ⊂ Q : π|P is surjective}.

Let P be an element of Ω of minimum length (we could also say: minimum dimension, but using length

in such arguments is better form, because then they can more easily be generalised). We show that P is a

projective cover of M .
13



Consider the diagram

Q

π
²²²²

P
π|P

// // M

Since Q is projective, there exists t : Q → P making the diagram commute, so that π|P t = π. Let i : P ↪→ Q

be the inclusion. Then π|P ti = π|P . Therefore, im(ti) ⊂ P also surjects onto M . If im(ti) is a proper

submodule of P , it has smaller length than P , which contradicts the choice of P . Therefore, im(ti) = P . By

finite-dimensionality, we get that ti : P → P is an isomorphism. The sequence

0 // P
i // Q // Q/P // 0

is therefore split by the map (ti)−1t : Q → P . So Q ∼= P ⊕Q/P and therefore P is projective.

To show that P ³ M is a projective cover, suppose P ′ is a projective module and λ : P ′ ³ M is a

surjection. Then by projectivity of P ′, there exists r : P ′ → P with π|P r = λ. Therefore, r(P ′) ⊂ P ⊂ Q

surjects onto M under π, which implies that r(P ′) = P since P has minimum length. So r is surjective, as

required. ¤

Proposition 4.10. If P is a projective module then the quotient map q : P → P/rad(P ) is a projective

cover.

Proof. If Q is projective and

Q

λ²²²²
P

q
// P/rad(P )

then there exists t : Q → P with qt = λ. Therefore, t(Q) + rad(P ) = P . Now if t(Q) 6= P then there exists

a maximal submodule X ( P with t(Q) ⊂ X. But rad(P ) ⊂ X because the radical is the intersection of

the maximal submodules. So t(Q) + rad(P ) ⊂ X ( P , a contradiction. Therefore, t(Q) = P and so t is

surjective, as required. ¤

Proposition 4.11. Any two projective covers of a module are isomorphic, in the sense that if P1 ³ M and

P2 ³ M are projective covers, then there exists an isomorphism λ : P1 → P2 such that the following diagram

commutes

P1

λ

²²

ÃÃ ÃÃA
AA

AA
AA

A

M

P2

>> >>}}}}}}}}
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Proof. By definition of a projective cover, there exists a surjection λ : P1 → P2 making the diagram commute.

There also exists a surjection µ : P2 → P1 making the diagram commute. Thus, µλ : P1 → P1 is a surjection,

hence an isomorphism by finite-dimensionality. This implies that λ is injective, and therefore λ is also an

isomorphism. ¤

Proposition 4.12. If P is projective then P is indecomposable ⇐⇒ P/rad(P ) is simple.

Proof. By the axioms for a radical, P/rad(P ) is semisimple. So P/rad(P ) is a direct sum of simples, by

Proposition 4.3. If P/rad(P ) = S1 ⊕ S2 ⊕ · · · ⊕ Sn with Si simple, and Pi ³ Si are projective covers, then

it is an exercise to show that ⊕iPi → ⊕iSi is also a projective cover. By the previous two propositions,

P ∼= ⊕iPi, which implies that n = 1 since P is assumed to be indecomposable.

Conversely, if P = Q1 ⊕Q2 then rad(P ) = rad(Q1)⊕ rad(Q2) by the exercise below, and so P/rad(P ) =

Q1/rad(Q1)⊕Q2/rad(Q2). Thus, P/rad(P ) is not simple. ¤

Exercise 4.13. Show that if τ is a radical then

τ(⊕n
i=1Mi) = ⊕n

i=1τ(Mi)

for any modules Mi.

Now we can use everything we have covered so far to prove a very nice theorem about the structure of a

finite-dimensional algebra. This theorem holds over any base field k.

Theorem 4.14. Let A be a finite-dimensional k–algebra. Then there are finitely many isomorphism classes

of simple A–modules S1, S2, . . . , Sn. Let Pi be the projective cover of Si. Then {P1, P2, . . . , Pn} is a complete

set of isomorphism classes of indecomposable projective A–modules. Furthermore, each Pi is a summand of

AA and every indecomposable summand of AA is isomorphic to one of the Pi.

Proof. First, if S is a simple A–module then we may define a map A → S by picking some nonzero s ∈ S and

sending a ∈ A to as. This map must be surjective because S is simple. This implies that S is a composition

factor of A. Therefore, by the Jordan-Hölder Theorem, there can be at most `(A) distinct simple modules.

Call the simples S1, S2, . . . , Sn. Let Pi be the projective cover of Si. Then Pi is indecomposable. Indeed,

if Pi = Q1 ⊕ Q2 with Q1, Q2 6= 0, then by simplicity of Si, either Q1 ³ Si or Q2 ³ Si. This is impossible

because Pi is a projective cover.

So {P1, P2, . . . , Pn} is a set of indecomposable projective A–modules. If P is any other indecomposable

projective A–module then P → P/rad(P ) is a projective cover by Proposition 4.10, and P/rad(P ) is simple

by Proposition 4.12, so must be isomorphic to one of the Si. Therefore, P ∼= Pi by Proposition 4.11. Thus,

{P1, P2, . . . , Pn} is a complete set of isomorphism classes of indecomposable projectives. Furthermore, no

two modules in this set can be isomorphic, because if Si � Sj then Pi � Pj . Indeed, an indecomposable
15



projective has a unique simple quotient because Proposition 4.12 shows that its radical has to be a maximal

submodule, and is therefore the unique maximal submodule.

Next, if Pi is one of the indecomposable projectives then because A is projective and A ³ Si, we must

have A ³ Pi. There is an exact sequence

0 // K // A // Pi
// 0,

which splits since Pi is projective. So Pi is a summand of A.

Finally, if U is any indecomposable summand of A then U is projective and U is a projective cover of

U/rad(U) by Proposition 4.10. But U/rad(U) is simple by Proposition 4.12, so U is the projective cover of

one of the Si and hence is isomorphic to one of the Pi. ¤

Definition 4.15. The indecomposable projectives Pi are called principal indecomposable modules.

We will show in the next lecture that each Pi is of the form Ae where e ∈ A is an idempotent.

5. Lecture 5

At the end of the last lecture, we proved that every finite-dimensional algebra is of the form

A = P a1
1 ⊕ · · · ⊕ P an

n

where the Pi are the projective covers of the simple A–modules Si. Note that each Pi has a unique simple

quotient Si. This quotient is called the head or top of Pi. The rest of the composition factors of Pi can be

quite complicated, and people who study these things often devote effort to trying to calculate them.

Exercise 5.1. Let k be a field and

A =


k 0

k k




be the algebra of 2 × 2 lower-triangular matrices over k. Find the simple A–modules and their projective

covers.

Tip: the correct way to approach this exercise is to think of yourself as a nineteenth-century biologist who

has just been sent a specimen of some exotic animal in a brown paper parcel. It is no good trying to write

down vector spaces with an A–action; this is like trying to understand the animal’s habitat, about which you

have no information. Instead, you want to look inside the animal. Get out your scalpel, dissect it, poke

around in there and see what you can find. Indeed, if you can write down a composition series for A, you

already know that every simple module will occur as one of the composition factors. You should not be afraid

to get your hands dirty!

Exercise 5.2. Repeat the previous exercise for the algebra k[t]/(tn).
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5.1. Semisimple algebras. Now we consider a special class of algebras for which every module is projective.

Theorem 5.3. Let A be a finite-dimensional algebra. The following are equivalent.

(1) rad(A) = 0.

(2) Every finite-dimensional A–module is projective.

Proof. If rad(A) = 0 then by Proposition 4.3, A = S1 ⊕ · · · ⊕ Sn, a direct sum of simple modules. Every

simple A–module is a composition factor of A, and therefore every simple module appears as one of the Si.

So every simple A–module is projective. Now let M be an arbitrary A–module. Then M has a composition

series

0 = M0 ( M1 ( M2 ( · · · ( Mn = M.

We have a short exact sequence

0 // Mn−1
// M // M/Mn−1

// 0

and this splits because M/Mn−1 is simple, hence projective. So M ∼= Mn−1 ⊕ M/Mn−1. Continuing

inductively yields

M ∼= M1 ⊕M2/M1 ⊕ · · · ⊕M/Mn−1

a direct sum of projectives. So M is projective.

Conversely, if every A–module is projective, then in particular the composition factors of a composition

series

0 = A0 ( A1 ( A2 ( · · · ( An = A

are projective. As above, we obtain that A is the direct sum of the Ai/Ai−1. So A is a direct sum of simples,

and therefore rad(A) = 0 by Proposition 4.3. ¤

Definition 5.4. An algebra A is semisimple if rad(A) = 0.

An abelian category C is semisimple if every object of C is projective (equivalently, every short exact

sequence in C splits).

Theorem 5.3 shows that A is a semisimple algebra if and only if A−mod is a semisimple category. The

following theorem is a structure theorem for semisimple algebras. The theorem is true over any algebraically

closed field C.

Theorem 5.5 (Artin-Wedderburn). A finite-dimensional C–algebra A is semisimple if and only if there are

some integers ni ≥ 1 with

A ∼= Mn1(C)×Mn2(C)× · · · ×Mnr (C).
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Proof. First, we show that B := Mn1(C) × Mn2(C) × · · · × Mnr
(C) is semisimple. As a left module over

itself, this algebra may be written as

(Cn1)n1 ⊕ · · · ⊕ (Cnr )nr

where Cni is the module of column vectors for Mni
(C). Each Cni is a simple Mni

(C)–module, and hence

also a simple module for the product B. Therefore, BB is a direct sum of simples, so is a semisimple algebra.

Conversely, suppose A is a semisimple algebra. For any algebra A, we may define a map

Aop → EndA(A)

by a 7→ (r 7→ ra). It is easy to check that this is a well-defined algebra map, and in fact an algebra

isomorphism. So Aop ∼= EndA(A). Now, since A is semisimple, we may write A = Sa1
1 ⊕ Sa2

2 ⊕ · · · ⊕ San
n

where the Si are the simple modules. Here Sai
i denotes the direct sum of ai copies of Si, and we assume

that Si � Sj for i 6= j. We get

Aop ∼= EndA(S1 ⊕ · · · ⊕ S1︸ ︷︷ ︸
a1 copies

⊕ · · · ⊕ Sn ⊕ · · · ⊕ Sn︸ ︷︷ ︸
an copies

).

In general, we may write homomorphisms ⊕iAi → ⊕jBj between two finite direct sums of modules as

matrices with entries in the Hom-spaces HomA(Ai, Bj). We already saw this in the proof of the Krull-

Schmidt Theorem above. Applying Schur’s Lemma, we recall that

HomA(Si, Sj) =




C i = j

0 otherwise.

Thus, EndA(A) is isomorphic to the algebra of matrices of the form




C C ··· C 0 ··· 0 ··· 0 ··· 0
C C ··· C 0 ··· 0 ··· 0 ··· 0
...

...
...

... 0 ··· 0 ··· 0 ··· 0
C C ··· C 0 ··· 0 ··· 0 ··· 0
0 0 ··· 0 C ··· C ··· 0 ··· 0

0 0 ··· 0
... ···

... ··· 0 ··· 0
0 0 ··· 0 C ··· C ··· 0 ··· 0
...

...
...

...
...

...
...

. . .
...

...
...

0 0 ··· 0 0 ··· 0 ··· C ··· C

0 0 ··· 0 0 ··· 0 ···
... ···

...
0 0 ··· 0 0 ··· 0 ··· C ··· C




with an a1 × a1 block in the upper left-hand corner, followed by an a2 × a2 block, etc. This algebra

is clearly isomorphic to Ma1(C) × Ma2(C) × · · · × Man(C). To complete the proof, it suffices to show

that Ma1(C) × Ma2(C) × · · · × Man(C) ∼= (Ma1(C) × Ma2(C) × · · · × Man(C))op. To see this, we can use

two easy facts. First, for any algebras A and B, (A × B)op ∼= Aop × Bop. This is left as an exercise.

Second, Mn(C)op ∼= Mn(C), an isomorphism being given by the map A 7→ AT which takes a matrix to its

transpose. ¤
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Remark 5.6. In general, if we work over a field that is not algebraically closed, then Schur’s Lemma states

that Hom(Si, Si) is a division ring (a ring in which every nonzero element is invertible), and the general

Artin-Wedderburn Theorem states that if R is an Artinian ring such that every R–module is projective, then

R is a product

Mn1(∆1)× · · · ×Mnr (∆r)

of matrix rings over division rings.

Remark 5.7. Maschke’s Theorem states that if G is a finite group, then the group algebra CG is a semisimple

algebra. The Artin-Wedderburn Theorem then implies that CG ∼= Mn1(C)× · · ·×Mnr
(C), where the ni are

the dimensions of the simple modules. This leads to the equation

|G| =
r∑

i=1

dim(Si)2

which is useful in calculating the representations of finite groups.

Historical Remark 5.8. Wedderburn was a Scottish mathematician who was keen on canoeing and never

married.

5.2. What about injectives? We have been concentrating on projective modules. Why have we neglected

injectives? It turns out that there is a trick which enables us to get some information about the injectives

for free.

Definition 5.9. Define a functor

D : A−mod → Aop −mod

by

DM = Homk(M, k) = M∗,

the k–linear dual.

The vector space M∗ is an Aop–module (a right A–module) because given φ : M → k and a ∈ A and

m ∈ M , we may define (φ · a)(m) = φ(am). It is an exercise to check that this is well-defined and that D is

in fact a contravariant equivalence of categories. This works because DD is the same as the identity functor.

Applying Theorem 4.14 to Aop and then applying D yields the following theorem.

Theorem 5.10. If A is a finite-dimensional algebra then there are finitely many isomorphism classes of

indecomposable injective modules I1, I2, . . . , In, where Ii is the injective envelope of the ith simple Si.

Recall that an injective envelope is the dual notion to a projective cover. The part of the theorem about

the indecomposable projectives being summands of A is of course not true for the injectives.
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5.3. Idempotents.

Definition 5.11. Let R be a ring. An element e ∈ R is called an idempotent if e2 = e.

Idempotents are rather useful in the study of finite-dimensional algebras.

Recall that r ∈ R is central if rs = sr for all s ∈ R.

Definition 5.12. If e, ei are idempotents then

(1) ei and ej are called orthogonal if eiej = ejei = 0.

(2) e 6= 0 is primitive if whenever e = e1 + e2 with e1, e2 orthogonal idempotents, then either e1 = 0 or

e2 = 0.

(3) e 6= 0 is a primitive central idempotent if e is central and if e = e1 +e2 with e1, e2 central orthogonal

idempotents then e1 = 0 or e2 = 0.

5.4. Central idempotents. Let A be a finite-dimensional algebra. Write 1 = f1 + f2 + · · ·+ fn where the

fi are pairwise orthogonal central idempotents, and n is as large as possible. Let us show that this uniquely

determines the fi. If 1 = f1 + f2 + · · ·+ fn = f ′1 + f ′2 + · · ·+ f ′m then for each i, fi = fi(f ′1 + f ′2 + · · ·+ f ′m) =

fif
′
1 + · · ·+ fif

′
m. If more than one term in this sum is nonzero, then we have 1 =

∑
j 6=i fj +

∑
fif

′
k, a sum

of more than n orthogonal central idempotents. Therefore, fi = fif
′
t for some t. Similarly, f ′t = f ′tfj for

some j, which forces j = i since fi 6= 0. Therefore, f ′t = f ′tfi = fif
′
t = fi. This shows that each fi is equal

to one of the f ′t , and conversely as well. So {f1, . . . , fn} = {f ′1, . . . , f ′m} as desired.

For any such decomposition of 1 ∈ A into a sum of orthogonal central idempotents fi, we have

A = Af1 ⊕Af2 ⊕ · · · ⊕Afn

as left A–modules. Each Afi is a two-sided ideal of A, and is an algebra in its own right with identity fi,

because fi(afi) = af2
i = afi for all a ∈ A. So as algebras we have

A ∼= Af1 ×Af2 × · · · ×Afn.

If M is an A–module then for m ∈ M , we have m = 1.m = f1m + · · ·+ fnm. So

M = f1M ⊕ f2M ⊕ · · · ⊕ fnM

and each fiM is an A–module because each fi is central. Furthermore, if i 6= j then HomA(fiM,fjM) = 0

because if ψ : fiM → fjM then ψ(fiM) = fjψ(fim) = ψ(fifjm) = 0. So each module decomposes into a

direct sum of pieces, the ith piece being an Afi module, and such that there are no morphisms between the

ith piece and the jth piece if i 6= j. This leads to a decomposition of the whole category of A–modules as

A−mod ∼= Af1 −mod× · · · ×Afn −mod,

the product of categories.
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Definition 5.13. The categories Afi −mod are called the blocks of A−mod. The algebras Afi are called

the blocks of A.

In representation theory, people like to study the module category of an algebra“one block at a time”.

Example 5.14. If

A =




C C 0

C C 0

0 0 C




then a decomposition of the identity element into pairwise orthogonal central idempotents is



1 0 0

0 1 0

0 0 1


 =




1 0 0

0 1 0

0 0 0


 +




0 0 0

0 0 0

0 0 1




and we get A ∼= M2(C)×C. We cannot decompose it further because although we can write diag(1, 1, 0) as

diag(1, 0, 0)+diag(0, 1, 0), these two idempotents are not central. We will explain the meaning of non-central

idempotents below.

Remark 5.15. As an aside, note that if A ∼= B×C are algebras, then 1A = (1B , 0)+(0, 1C) is a decomposition

of 1A into a sum of orthogonal central idempotents. Let us say an algebra A is not a product if there are no

algebras A1 and A2 with A ∼= A1 × A2. Then the above considerations show that the following theorem is

true.

Theorem 5.16 (Krull-Remak-Schmidt Theorem for algebras). If A is a finite-dimensional algebra then

A ∼= A1 × A2 × · · · × An where each Ai is not a product, and if A1 × · · · × An
∼= B1 × · · · ×Bm where each

Bi is not a product, then m = n and Ai
∼= Bj in some order.

Proof. We have shown the existence of such a decomposition above. For the uniqueness, we observe that

the factors in the product are precisely the algebras Afi, which depend only on A. ¤

5.5. Non-central idempotents. Now we consider what happens if you write 1 = e1 + e2 + · · · eN where

the ei are pairwise orthogonal idempotents, but we do not insist that they are central. Clearly, N ≥ n where

n is the number of fi in the decomposition considered above. We show that each ei is primitive. Indeed, if

ei = e′i + e′′i where e′i, e
′′
i are orthogonal idempotents, then e′iej = e′i(e

′
i + e′′i )ej = e′ieiej = 0 for all j 6= i.

Similarly, eje
′
i = 0 for all j 6= i, and the same for e′′i . So we get the decomposition 1 =

∑
j 6=i ej + e′i + e′′i of

1 into orthogonal idempotents, which contradicts the maximality of N .

Claim 1. Each Aei is an indecomposable A–module.
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To prove the claim, suppose Aei = Q1 ⊕Q2, where Q1 and Q2 are left A–modules. Then ei = q1 + q2 for

some qi ∈ Qi. Now,

ei = e2
i = (q1 + q2)2 = q2

1 + q2
2 + q1q2 + q2q1. (1)

Also, q1 = q1ei because q1 ∈ Aei, and on the other hand ei = e2
i = ei(q1 + q2) = eiq1 + eiq2 = q1 + q2.

Since eiq1 ∈ Q1 and eiq2 ∈ Q2, from eiq1 + eiq2 = q1 + q2 and the fact that Q1 ⊕ Q2 is a direct sum, we

get eiq1 = q1. So q2q1 + q2
1 = q1 while q1 = q1ei implies q1 = q2

1 + q1q2. Thus q1q2 = q2q1 ∈ Q1 ∩ Q2 = 0.

Therefore, going back to Equation (1), we have e1 = q2
1 + q2

2 = q1 + q2. Thus, both of the qi are idempotents

and they are orthogonal, which contradicts that ei is primitive. This proves the claim.

The decomposition 1 =
∑N

i=1 ei gives

A = Ae1 ⊕Ae2 ⊕ · · · ⊕AeN .

We have just shown that the Aei are indecomposable and therefore the Krull-Schmidt Theorem implies

that N and the modules Aei are uniquely determined by A. Note that the ei themselves are not uniquely

determined by A, for example in M2(C) we have the decompositions 1 = ( 1 0
0 0 ) + ( 0 0

0 1 ) = ( 1 1
0 0 ) +

(
0 −1
0 1

)
.

This contradicts what I said in the lecture; sorry!

We see that the Aei are the indecomposable summands of A. In other words, they are precisely the

indecomposable projectives.

Example 5.17. Let A = M3(C). Then we have the decomposition

1A =




1 0 0

0 1 0

0 0 1


 =




1 0 0

0 0 0

0 0 0


 +




0 0 0

0 1 0

0 0 0


 +




0 0 0

0 0 0

0 0 1


 = e1 + e2 + e3

and each Aei is isomorphic to the module C3 of column vectors. This shows that the Aei can be isomorphic

to each other.

Example 5.18. Now let us do Exercise 5.1. Recall that A =
(

k 0
k k

)
. We may write the identity element as

e1 + e2 where e1 = ( 1 0
0 0 ) and e2 = ( 0 0

0 1 ). We get A = Ae1 ⊕ Ae2, and Ae1 =
(

k 0
k 0

)
while Ae2 = ( 0 0

0 k ). We

see that S2 := Ae2 is a simple module since it is one-dimensional, so it is its own projective cover. On the

other hand, Ae1 is not simple, since it has a submodule M := ( 0 0
k 0 ). This submodule is simple since it is

one-dimensional; furthermore, it is a one-dimensional vector space on which an element ( a 0
b c ) of A acts as

multiplication by c. Therefore, it is isomorphic to S2. Thus, there is a composition series

0 ( M ∼= S2 ( Ae1/M

of Ae1. The module S1 := Ae1/M is simple since it has dimension 1. It is the head of the indecomposable

projective Ae1. How do we know Ae1 is indecomposable? One way is to observe that M is a two-sided ideal

of A containing only nilpotent elements. Therefore, M ⊂ rad(A) 6= 0. But if Ae1 was decomposable, then A

would be a direct sum of three simple modules and we would have rad(A) = 0, a contradiction.
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Summary: the simple modules are S1 =
(

k 0
k 0

)
/ ( 0 0

k 0 ) and S2 = ( 0 0
0 k ). The projective cover of S2 is S2

and the projective cover of S1 is
(

k 0
k 0

)
.

6. Lecture 6

6.1. Quivers. Quivers are really important (as we shall see) as well as being a source of computable ex-

amples. Colloquially, a quiver is a conical bag used for carrying arrows. In mathematics, a quiver means a

finite directed graph. To be more precise, we make the following definition.

Definition 6.1. A quiver is a 4–tuple Q = (Q0, Q1, t, h) where

• Q0 and Q1 are finite sets.

• t, h : Q1 → Q0 are functions.

We say that Q0 is the set of vertices of Q, Q1 is the set of arrows and t(a), h(a) are the tail and head of

the arrow a respectively.

We usually think of quivers pictorially. We draw a dot for each vertex in Q0, and for each arrow a, we

draw an arrow from the dot t(a) to the dot h(a). Loops at a vertex are allowed, and there can be any number

of arrows between a given pair of vertices.

Definition 6.2. Let Q be a quiver. A representation V = ({Vi}, {φa}) of Q is

• A choice of a vector space Vi for each i ∈ Q0.

• A choice of a linear map φa : Vt(a) → Vh(a) for each a ∈ Q1.

• That’s all! There is no other condition.

Examples 6.3. (1) Let

Q = • // •

Then some representations of Q are: k // 0 , 0 // k , k
λ // k , Cn

A // Cm ,

where A is some m× n matrix.

(2) Let Q be the quiver ª with one vertex and one loop. A representation of Q is a choice of vector

space V , together with a linear map V → V .

6.2. Morphisms of representations.

Definition 6.4. If Q is a quiver and V = ({Vi}, {φV
a }),W = ({Wi}, {φW

a }) are representations of Q, a

morphism ϕ : V → W consists of a linear map ϕi : Vi → Wi for each i ∈ Q0, such that for each arrow a,

the following diagram commutes.

Vt(a)

φV
a //

ϕt(a)

²²

Vh(a)

ϕh(a)

²²
Wt(a)

φW
a // Wh(a)
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You can see that identity morphisms and compositions are well-defined, so that representations of a given

quiver Q form a category. Furthermore, you can define direct sums, kernels and cokernels in this category,

and it is possible to show that the category is abelian (we will show anyway that it is the category of modules

over an algebra associated to Q).

Examples 6.5. (1) Let

Q = • // •

and let λ, µ ∈ k and let W = k
λ // k and V = k // 0 be representations of Q. Then

k
λ //

µ

²²

k

²²
k // 0

is a morphism W → V . We see that Hom(W,V ) = k. On the other hand, Hom(V,W ) = 0.

(2) If Q is the quiver with one vertex and one loop, and V = (Cn, A) is a representation of Q, then an

automorphism V → V is the same thing as a matrix g ∈ GLn such that g−1Ag = A. Classifying

representations of Q up to isomorphism is therefore the same as classifying matrices up to conjugacy.

Over C, this classification is given by the Jordan normal form, so we may identify the set of isomor-

phism classes of representations of Q with the set
⊔

P C|P | where the union is over all partitions P ,

and |P | denotes the number of parts of P .

Definition 6.6. Let Q be a quiver. A path in Q is either a sequence of arrows a0a1 . . . an such that

h(ai) = t(ai−1) for all i, or one of the symbols ek for k a vertex of Q. For a path p = a0a1 . . . an, we define

t(p) = t(an) and h(p) = h(a0), and we define t(ek) = h(ek) = k.

The ek are called trivial paths. They are supposed to be paths which consist of starting at the vertex k,

doing nothing, and staying at k. Given any two paths p and q with h(q) = t(p), we have the concatenation

pq which is a well-defined path. If q = et(p) then we define pq = p and if p = eh(q) then we define pq = q.

Definition 6.7. Let Q be a quiver and k a field. The path algebra of Q is the vector space kQ with basis

given by the set of paths, and multiplication given by

p · q =





pq if h(q) = t(p)

0 otherwise.

It is an exercise to check that kQ is a well-defined algebra. By definition, its dimension is equal to the

number of paths in Q. Its unit element is given by 1 =
∑

i∈Q0
ei, as can be checked from the definition.

Examples 6.8. (1) If Q is the quiver with one vertex and one loop x, then the paths in Q are e (the

trivial path at the vertex) together with x, x2, x3, . . .. In this case, we have kQ ∼= k[x].
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(2) If Q is the quiver with one vertex and several loops x1, x2, . . . , xn, then kQ is the free algebra

k〈x1, . . . , xn〉.
(3) Let Q = • // • . Then the paths in Q are e0, e1 and a, where 0 is the leftmost vertex and a

denotes the single arrow. The path algebra of Q is the three-dimensional vector space ke0 +ke1 +ka

with multiplication given by e1a = ae0 = a, ae1 = e0a = 0, e2
0 = e0, e2

1 = e1, a2 = 0, e0e1 = e1e0 = 0.

This algebra is isomorphic to
(

k 0
k k

)
via

(
α 0
β γ

) 7→ βa + αe0 + γe1.

Theorem 6.9. Let Q be a quiver and k a field. There is an equivalence of categories between the category

of representations of Q and the category of left kQ–modules.

Proof. Let V = ({Vi}i∈Q0 , {φa}a∈Q1) be a representation of Q. Define a kQ–module V by V = ⊕i∈Q0Vi,

and if p = a0a1 . . . an is a path and v ∈ V , define

p · v = φa0φa1 . . . φan(vt(an))

where v =
∑

i∈Q0
vi. Also, define ekv = vk. It is necessary to check that V is really a kQ–module, and that

F : V 7→ V is a functor. This is left as an exercise.

To go the other way, if X is a left kQ–module, define a representation V = X̂ of Q by Vi = eiX for all

i ∈ Q0, and φa : et(a)X → eh(a)X by φax = ax. This time it is clear that X̂ is a well-defined representation

of Q. We still need to check that G : X 7→ X̂ is a functor.

Finally, it is necessary to check that FG and GF are naturally isomorphic to the respective identity

functors. This is again left as an exercise. ¤

Example 6.10. To see how the correspondence between representations and kQ–modules works in practice,

consider the quiver Q = • // • again. The path algebra of Q is isomorphic to
(

k 0
k k

)
. Let us work

out which representation of Q corresponds to the module M = ( 0 0
k k ). Using the fact that e0 corresponds to

( 1 0
0 0 ) and e1 corresponds to ( 0 0

0 1 ), we get e0M = 0 and e1M = M . Therefore, M is the representation

0 // k2.

What about the representation k
1 // k of Q? The corresponding kQ–module will be k⊕ k =

(
k
k

)
with

the action e0 ( α
β ) = ( α

0 ), e1 ( α
β ) =

(
0
β

)
and a ( α

β ) = ( 0
α ). In terms of lower triangular matrices, this is the

module P =
(

k 0
k 0

)
.

At the moment, we are mostly interested in finite-dimensional path algebras.

Lemma 6.11. Let Q be a quiver and let k be a field. Then kQ is finite-dimensional if and only if Q has no

oriented cycles (including loops).

Proof. If Q has an oriented cycle c, then c, c2, c3, . . . are basis elements of kQ. Conversely, if Q has no

oriented cycles, then no path in Q can be longer than the number of edges in Q, so there is an upper bound

for the lengths of the paths in Q and therefore there are only a finite number of paths. ¤
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We will consider only those quivers Q with no cycles. We will calculate the simple, indecomposable

projective and indecomposable injective modules for such a quiver. These things turn out to be easy to

calculate, which means that quivers are a good source of examples. Furthermore, they are very important

for theoretical reasons, as will be shown below.

7. Lecture 7

Let Q be a quiver with no oriented cycles, k a field, and kQ the path algebra of Q. Recall that we have

1 =
∑

i∈Q0

ei

and that the ei are pairwise orthogonal idempotents. Thus, we have the decomposition

A =
⊕

i∈Q0

Aei.

We claim that each Aei is indecomposable. To see this, we use the following proposition.

Proposition 7.1.

HomA(Aei, Aej) ∼= eiAej

as vector spaces.

To prove the proposition, map f ∈ HomA(Aei, Aej) to f(ei). It is an exercise to show that this gives a

bijection.

In particular, EndA(Aei) ∼= eiAei. This space has a basis given by the paths from the vertex i to the

vertex i. Since Q has no oriented cycles, we must have eiAei = kei. Therefore, EndA(Aei) ∼= k. Now

Fitting’s Lemma implies that Aei is an indecomposable module. The Krull-Schmidt Theorem then says that

{Aei : i ∈ Q0} is the complete set of projective indecomposable A–modules.

Now we calculate the simple modules. We have a vector space decomposition Aei = ⊕jejAei. Because

there is no nontrivial path from i to i for any vertex i, we see that ⊕j 6=iejAei is a submodule, and it has

codimension 1. Therefore, it is a maximal submodule. Since the radical of an indecomposable projective

module is a maximal submodule, and the radical is by definition the intersection of all the maximal submod-

ules, it follows that an indecomposable projective has a unique maximal submodule and that this is equal

to the radical. Therefore, rad(Aei) =
⊕

j 6=i ejAei, and the quotient

Si = Aei/rad(Aei)

is the head of Aei. As a representation of Q, it has a k at the vertex i and zeroes at all the other vertices.

Clearly, if i 6= j then Si is not isomorphic to Sj , since HomA(Si, Sj) = 0.

Examples 7.2. Consider first the quiver Q = • // • as before. Label the vertices 0 // 1 The

simple kQ–modules are S0 = k // 0 and S1 = 0 // k . The projective cover of S1 is Ae1, the

span of all the paths starting at the vertex 1. This is just S1 itself, so S1 is projective. The projective cover
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of S0 is Ae0. Viewed as a representation of Q, this is the representation whose vector space at the vertex i

is the span of the paths from 0 to i. We may write it as k
1 // k .

The same pattern holds in general. Here is a more complicated example. Let us consider the quiver

Q = • // •

• // •

??ÄÄÄÄÄÄÄ

??ÄÄÄÄÄÄÄ

•

__???????
•oo

with the vertices labelled as follows.

1 // 2

0 // 3

@@¡¡¡¡¡¡¡

@@¡¡¡¡¡¡¡

4

^^>>>>>>>

5oo

There is one projective simple module S2, given by

0 // k

0 // 0

@@¡¡¡¡¡¡¡

@@¡¡¡¡¡¡¡

0

^^>>>>>>>

0oo

None of the other simples are projective, because for every vertex i 6= 2, there is a nontrivial path from i to

some other vertex. Some examples of simple modules Si and their projective covers Pi are:

S0 = 0 // 0

k // 0

@@¡¡¡¡¡¡¡

@@¡¡¡¡¡¡¡

0

^^>>>>>>>

0oo
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with projective cover

k2
id // k2

k // k

??ÄÄÄÄÄÄÄÄ

??ÄÄÄÄÄÄÄÄ

0

__@@@@@@@@
0oo

where the two maps k → k2 are the canonical insertions of k into k ⊕ k, and

S4 = 0 // 0

0 // 0

??¡¡¡¡¡¡¡

??¡¡¡¡¡¡¡

k

^^>>>>>>>

0oo

with projective cover:

k2
id // k2

0 // k

??ÄÄÄÄÄÄÄÄ

??ÄÄÄÄÄÄÄÄ

k

__@@@@@@@@

0.oo

How about injective modules? We can get these by finding the indecomposables projectives for (kQ)op

and then taking their linear duals.

Lemma 7.3. If Q = (Q0, Q1, t, h) is a quiver, define the opposite quiver Qop := (Q0, Q1, h, t). That is, Qop

is Q with all arrows reversed. Then

(kQ)op ∼= kQop.

Proof. Exercise. ¤

Example 7.4. Here is an example. Let Q be the quiver

Q = • // • •oo
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with the vertices labelled 1, 2, 3 from left to right. Here is a table of the simple modules Si and their projective

covers Pi.

S1 = k // 0 0oo P1 = k
1 // k 0oo

S2 = 0 // k 0oo P2 = 0 // k 0oo

S3 = 0 // 0 koo P3 = 0 // k k
1oo

To find the indecomposable injectives, we should take the indecomposable projectives for the opposite quiver

Qop = • •oo // •

and dualise them. The simple Qop modules and their projective covers are

Σ1 = k 0oo // 0 Π1 = k 0oo // 0

Σ2 = 0 koo // 0 Π2 = k k
1oo 1 // k

Σ1 = 0 0oo // k Π1 = 0 0oo // k

and you will find that taking the duals of the Πi gives the indecomposable injectives for Q.

I1 = k // 0 0oo

I2 = k
1 // k k

1oo

I3 = 0 // 0 koo

7.1. Projective dimension. Now we need to recall some homological algebra.

Definition 7.5. A projective resolution of a module M is an exact sequence

· · · → Pn → Pn−1 → · · · → P0 → M → 0

where each Pi is projective. We say that the resolution has length n if Pn+1 = Pn+2 = · · · = 0.

Definition 7.6. Define the projective dimension pdM ∈ Z≥0∪{∞} to be the minimum length of a projective

resolution of M .

If A is an algebra, define the global dimension (aka homological dimension) of A to be

gldim(A) = sup{pdM : M ∈ A−mod}.

We need to use Ext, so let us recall its basic properties.

First, if A is a k–algebra then for any A–modules M,N and any n ≥ 0, Extn
A(M, N) is a k–vector space

which can be thought of as a kind of generalised Hom. Indeed, Ext0A(M, N) = HomA(M,N). In general, we

define Extn
A(M, N) as follows. Let

· · · → Pn → Pn−1 → · · · → P0 → M → 0
29



be a projective resolution of M . Write the maps in this resolution as dn : Pn → Pn−1. Take Hom into N ,

and chop off the Hom(M, N) term to get a complex of vector spaces which goes to the right:

0 // HomA(P0, N)
d∗1 // HomA(P1, N)

d∗2 // · · ·
d∗n // HomA(Pn, N)

d∗n+1 // · · ·

Define

ExtA(M, N) := ker(d∗n+1)/im(d∗n).

One of the most important properties of the Ext groups is the long exact sequence in cohomology. If

0 → M ′′ → M → M ′ → 0

is a short exact sequence of A–modules and N is an A–module, then the sequence

0 → HomA(M ′, N) → HomA(M,N) → HomA(M ′′, N)

is always exact. In fact, this can be extended to an exact sequence:

0 → HomA(M ′, N) → HomA(M,N) → HomA(M ′′, N) → Ext1A(M ′, N) → Ext1A(M,N) → · · ·

Ext1A(M ′′, N) → Ext2A(M ′, N) → Ext2A(M, N) → Ext2A(M ′′, N) → Ext3A(M ′, N) → · · ·

and so on. Although the maps in this sequence can be written down explicitly, it is often just the existence

of such an exact sequence which is useful in applications.

Fact 7.7. If A is an algebra then

gldim(A) ≤ n ⇐⇒ Extn+1
A = 0.

Proof. If every module has a projective resolution of length≤ n then a direct calculation shows that Extn+1 =

0.

Conversely, if

Pn

θn // Pn−1
// · · · // P0

θ0 // M //// 0

is a projective resolution of a module M then let Qi = Pn+i and consider the following sequence, which is a

projective resolution of im(θn).

Qn

θ2n // Qn−1
// · · · // Q0

θn // im(θn) // 0

If N is any module, we get that Ext1(im(θn), N) = Extn+1(M, N) = 0 by hypothesis. So im(θn) is projective

and we obtain the following resolution of M of length ≤ n

0 // im(θn) // Pn−1
// Pn−2

// · · · // M // 0

¤
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Note that the fact that Ext1(K,−) = 0 implies that K is projective, which was used in the above proof,

can be deduced from the long exact sequence for Ext. For details of the above, see the book [Rot09].

Definition 7.8. Let A be an algebra. A is said to be heriditary if gldim(A) ≤ 1.

We’ve already dealt with the case gldim(A) = 0 for a finite-dimensional C–algebra A. This was the

Artin-Wedderburn Theorem. Our aim now is to deal with the case gldim(A) ≤ 1. We now explain why this

is called “hereditary”.

Fact 7.9. gldim(A) ≤ 1 ⇐⇒ every submodule of a projective module is projective.

Proof. If every submodule of a projective is projective, then if M is a module, we can first find a projective

P0 which surjects onto M , and then we have an exact sequence

0 → K → P0 → M → 0

where K is the kernel. Then K must be projective, so M has a projective resolution of length ≤ 1. Therefore,

the global dimension of A does not exceed 1.

Conversely, if gldim(A) ≤ 1, then Ext2A = 0. Suppose P is a projective A–module and K ⊂ P . Then

0 → K → P → P/K → 0

is an exact sequence. Let N be any module and apply the long exact sequence:

0 → Hom(P/K, N) → Hom(P,N) → Hom(K, N) → Ext1(P/K,N) → · · ·

Ext1(P, N) → Ext1(K,N) → Ext2(P/K,N) = 0

Since P is projective, Ext1(P,−) = 0 and therefore Ext1(K,N) = 0 for all N , which implies that K is

projective. ¤

The reason for the name “hereditary” is that a submodule of a projective module inherits the property

of being projective.

Our next aim is to show that path algebras are hereditary. Ultimately, we will show that if A is a

hereditary finite-dimensional algebra then A−mod is equivalent to kQ−mod where Q is some quiver.

8. Lecture 8

In this lecture we will prove that path algebras are hereditary in two ways. The first way is to directly

write down a resolution of an arbitrary module M . It works for any quiver, even one with loops. The

argument is copied directly from [CB].

Theorem 8.1. Let Q be a quiver and M a kQ–module. Then there is a short exact sequence

0 //
⊕

a∈Q1
Aeh(a) ⊗k et(a)M

f
//
⊕

i∈Q0
Aei ⊗k eiM

g
// M // 0
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where the map g is given on the ei–component by g(α⊗x) = αx and the map f is given on the a–component

of the direct sum by f(γ ⊗ x) = γa⊗ x− γ ⊗ ax.

Proof. The map g is onto because M =
∑

i∈Q0
kQeiM . A direct calculation shows that gf = 0. The harder

parts are to show that f is injective and to show that ker(g) ⊂ im(f).

To show that ker(f) = 0, let ξ ∈ ker(f) and write

ξ =
∑

a∈Q1

∑
p

p⊗ xp,a

where xp,a is some element of M , and the second summation is over all paths p with h(p) = a. Suppose

ξ 6= 0. Then let p be a path of maximal length such that xp,a 6= 0. Then

f(ξ) =
∑

a

∑
p

pa⊗ xp,a −
∑

a

∑
p

p⊗ axp,a.

Because p was chosen of maximal length, the only term of f(ξ) in which pa appears in the first factor is

pa⊗ xp,a. Since xp,a was taken to be nonzero, we get f(ξ) 6= 0, a contradiction. Thus, ξ = 0.

To show that ker(g) ⊂ im(f), let

ζ =
∑

p

p⊗mp

be an element of ker(g), where the sum is over the paths p in Q. If p is a path of length > 0 (ie. a nontrivial

path) then p = p′a for some path p′ and some arrow a. Then f(p′⊗mp) = p⊗mp−p′⊗amp. So ζ−f(p′⊗mp)

has no p–component. Continuing inductively, we can find an element w ∈ im(f) with

ζ − w =
∑

ei ⊗mi

for some mi ∈ eiM . Now, g(ζ − w) = g(ζ) − g(w) = 0 because we have already shown that gf = 0. Thus,
∑

mi = 0 ∈ ⊕
eiM . This implies mi = 0 for all i and so ζ − w = 0, so ζ ∈ im(f). ¤

Remarks 1. It is worth going over the above proof carefully as it is difficult to understand such a proof

during the lecture. It was copied almost word-for-word from [CB], so it is worth looking at those as well.

Corollary 8.2. For any quiver Q, kQ is a hereditary algebra.

Proof. It suffices to note that the modules
⊕

a∈Q1
Aeh(a) ⊗k et(a)M and

⊕
i∈Q0

Aei ⊗k eiM are projective

for any M , because as left A–modules they are isomorphic to direct sums of copies of Aer for various r. ¤

In the case of a quiver with no loops, we now give another proof that path algebras are hereditary. It is

useful to give both proofs, because there are aspects of both which will be useful to us.

Theorem 8.3. Let A be a finite-dimensional algebra with Jacobson radical J . Then

gldim(A) = pdA(A/J).
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Proof. Write A =
⊕

P ai
i as a direct sum of indecomposable projectives. Because radicals commute with

finite direct sums, J = rad(A) =
⊕

rad(Pi)ai . Therefore, A/J =
⊕

(Pi/rad(Pi))ai . This shows that every

simple A–module is a summand of the A–module A/J . Therefore, if pd(A/J) ≤ n then pd(S) ≤ n for every

simple A–module S.

(Here we use the fact that for any modules Mi, pd(M1⊕ · · ·Mn) = max{pd(M1), . . . , pd(Mn)}. This can

be proved by observing that pd(M) is the smallest nonnegative integer n such that Extn+1(M,−) = 0 and

using the fact that Ext functors commute with finite direct sums).

Now if pd(S) ≤ n for all simple S, then pd(M) ≤ n for all M , because the Horseshoe lemma implies that

if

0 → M ′′ → M → M ′ → 0

is an exact sequence, then pd(M) ≤ max{pd(M ′), pd(M ′′)}. For the Horseshoe Lemma, see [Rot09]. Using

this fact, together with the fact that every module has a composition series, we can show by induction on

the length of M that pd(M) ≤ n for all M . ¤

Corollary 8.4. A finite-dimensional algebra A is hereditary if and only if the Jacobson radical J is a

projective A–module.

Proof. If J is a projective A–module then 0 → J → A → A/J → 0 is a projective resolution of A/J and

therefore pd(A/J) ≤ 1. Conversely, if A is hereditary then J ⊂ A is a projective module because it is a

submodule of a projective. ¤

Definition 8.5. If Q is a quiver then the arrow ideal of kQ is the two-sided ideal of kQ generated by all the

arrows.

Proposition 8.6. If Q is a quiver without oriented cycles then the Jacbson radical J of kQ is equal to the

arrow ideal of kQ.

Proof. Let A be the arrow ideal of KQ. If a is an arrow of kQ then (1− a)(1 + a) = (1 + a)(1− a) = 1 so

1− a is a unit and therefore a ∈ J . Therefore, A ⊂ J . Conversely, suppose I is a two-sided ideal of kQ such

that every x ∈ I is nilpotent. Suppose x :=
∑

αiei +
∑

p βpp ∈ I where the second sum is over all paths of

length > 0. We want to show that each αi = 0. If not, then eixei = αiei ∈ I and so ei ∈ I. But ei is not

nilpotent. Therefore, αi = 0 for all i, and I ⊂ A. In particular, J ⊂ A and therefore A = J as required. ¤

Note that I mistakenly said in the lecture that the arrow ideal is equal to the Jacobson radical for any

path algebra. This is completely untrue, for example for the quiver with one vertex and one loop, the path

algebra is k[x] and the arrow ideal is (x), but the Jacobson radical is 0.
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Now we can show that any finite-dimensional path algebra A is hereditary in the following way. We just

need to show that the Jacobson radical is a projective left A–module. The Jacobson radical may be written

J =
⊕

a∈Q1

Aa =
⊕

a∈Q1

Aeh(a)a.

as a left A–module, this is isomorphic to
⊕

a∈Q1
Aeh(a). This is a projective module, which proves that A is

hereditary.

It is interesting that path algebras are hereditary, but even more interesting is the fact that the path

algebras of cycle-free quivers are the only examples of hereditary algebras up to Morita equivalence (a notion

to be defined later). Our next aim is to prove a more general theorem than this. We will show that if A is

a finite-dimensional algebra then A−mod is equivalent to kQ/I −mod for some quiver Q and some ideal I

of kQ. We will then show that the hereditary algebras are exactly those for which I = 0.

8.1. Elementary algebras. Our first aim is to associate a quiver to a finite-dimensional algebra A. We

restrict for the moment to so-called elementary algebras.

Theorem 8.7. If A is a finite-dimensional algebra over an algebraically closed field k and J is the Jacobson

radical of A then A/J is semisimple.

Proof. By the axioms for a radical, rad(A/J) = 0 and therefore A/J is a direct sum of simple A–modules

by Proposition 5.3. Each of these modules is also an A/J–module, and furthermore they are simple A/J–

modules. Therefore, A/J is a direct sum of simple A/J–modules, so is a semisimple algebra. ¤

The Artin-Wedderburn Theorem now says that A/J is a direct product of matrix rings over k. If all of

these matrix rings are 1× 1, then A is said to be elementary.

Definition 8.8. Let k be an algebraically closed field and A a finite-dimensional k–algebra. Then A is called

elementary if

A/J ∼= k × k × · · · × k

where J is the Jacobson radical of A.

For example, if Q is a quiver without loops then CQ/J ∼= ×i∈Q0Cei, so CQ is elementary. On the other

hand, M2(C) is not elementary.

9. Lecture 9

Recap: if A is a finite-dimensional algebra and J is the Jacobson radical of A (J = rad(A), but we usually

write it as J when we are thinking of it as a two-sided ideal rather than a left A–module) then A/J is a

semisimple algebra.

If our field is algebraically closed, then the Artin-Wedderburn Theorem says that A/J ∼= Mn1(k)× · · · ×
Mnr (k), and we say that A is elementary if ni = 1 for all i.
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Another fact about the Jacobson radical which I want to use is the following. Recall that if I is a two-sided

ideal in some ring then Ik := {a1a2 · · · ak : ar ∈ I}.

Theorem 9.1. If A is a finite-dimensional algebra with Jacobson radical J then for all k, either Jk = 0 or

Jk ) Jk+1.

Proof. If Jk = Jk+1 then Jk = JJk+1 = rad(A)Jk+1. But recall that for every A–module M , rad(A)M ⊂
rad(M). So Jk ⊂ rad(Jk). By definition of the radical, this is impossible unless Jk = 0. ¤

The series of ideals

A ⊃ J ⊃ J2 ⊃ · · ·

must therefore end in 0. It is called the Loewy series for A. It is not necessarily a composition series. The

number

` := min{m : Jm = 0}

is called the Loewy length of A.

9.1. The quiver of an algebra. Now let us associate a quiver to an elementary algebra A. Let A be an

elementary algebra over an algebraically closed field k. Let {ei} be a complete set of orthogonal primitive

idempotents in A, so that 1 =
∑

ei. Let εi = ei + J ∈ A/J . Then the εi are nonzero primitive idempotents

in A/J , and A/J =
⊕

i kεi. We define the quiver Q(A) as follows: the vertices of Q(A) are the idempotents

εi and the number of arrows from i to j is equal to

dimk

(
εj(J/J2)εi

)
.

Notice that the quiver could have loops! (Example below).

Definition 9.2. Q(A) is called the quiver of A.

Examples 9.3. (1) Let

A =




k 0 0

k k 0

k k k




then the set of nilpotent elements in A is

J :=




0 0 0

k 0 0

k k 0



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and this happens to be a two-sided ideal. Since the Jacobson radical is the largest ideal consisting

entirely of nilpotents, J must be equal to the Jacobson radical. We also have that

J2 =




0 0 0

0 0 0

k 0 0




and so J/J2 may be identified with the two-dimensional vector space



0 0 0

k 0 0

0 k 0




The idempotents εi are ε1 = diag(1, 0, 0), ε2 = diag(0, 1, 0), ε3 = diag(0, 0, 1) modulo J . A quick

calculation shows that

dim(εj(J/J2)εi) =





1 j = 3, i = 2 or j = 2, i = 1.

0 otherwise.

The quiver Q(A) is

1 // 2 // 3.

(2) Let

A = {




a 0 0

c b 0

d 0 b


 : a, b, c, d ∈ k} ⊂ M3(k).

Then the Jacobson radical is

J =




0 0 0

∗ 0 0

∗ 0 0




and this time J2 = 0. There are two idempotents, e1 = diag(1, 0, 0), e2 = diag(0, 1, 1) and this time

we get

Q(A) = 1
//// 2.

(3) Let A =
∧
C3, the exterior algebra of a three-dimensional vector space. Then

A = C1⊕ ∧1C⊕ ∧2C⊕ ∧3 C.

The product is given by ∧. Let {x, y, z} be a basis for C3.

If a ∈ C3 then a2 = a∧a = 0, and therefore every element of
⊕

i>0 ∧iC is nilpotent. Since this forms

a two-sided ideal and it consists precisely of the nilpotent elements, it must be the Jacobson radical

J . Then J2 = ∧2C⊕ ∧3C and J/J2 is spanned by the images of x, y and z. We have A/J = C and
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there is one idempotent ε1. The space ε1(J/J2)ε1 is three-dimensional. Thus, the quiver Q(A) has

one vertex and three loops. This illustrates that Q(A) may have oriented cycles.

Theorem 9.4. Let A be a finite-dimensional elementary algebra over an algebraically closed field k. Then

there is a surjective algebra map

kQ(A) → A

where Q(A) denotes the quiver of A. The kernel K of this surjection satisfies

Rs ⊂ K ⊂ R2

for some s ≥ 2, where R denotes the arrow ideal of kQ(A).

Proof. Today we will prove everything except the surjectivity. Let J be the Jacobson radical of A and let

e1, . . . , en be a set of primitive orthogonal idempotents such that
∑

i ei = 1. Let εi be the image of ei in

A/J , εi = ei + J . Then A/J = ⊕kεi. Now, for each i, j, let {(yij)s} be a basis of εj(J/J2)εi. There is a

map

ejJei → εj(J/J2)εi

x 7→ x + J2.

Let {(yij)s} ⊂ ejJei be a set of elements such that (yij)s + J2 = (yij)s for each i, j, s. Then the set of

vertices of Q(A) may be identified with {εi} and the set of arrows with {(yij)s}. We define a linear map of

vector spaces as follows.

εi 7→ ei

(yij)s 7→ (yij)s.

The domain of this map is the space spanned by the paths of length ≤ 1 in kQ(A) and its range is A. Here,

we are abusing notation slightly and writing εi for the trivial path at the vertex εi, when we should perhaps

have written eεi . In order to get the map f , we simply extend our map to paths of arbitrary length in the

obvious way; a path in Q(A) is a sequence of arrows, and we map this sequence to the product of the image

of each of the arrows in the specified order. We now have a linear map defined on the natural basis of kQ(A),

and we should check that this is an algebra map. But this just amounts to checking that the relations in

kQ(A) are preserved, which is quite obvious by construction and the choice of the (yij)s.

So we have a map of algebras f : kQ(A) → A. We don’t yet know that this is surjective, but we can prove

the statement about the kernel. We want to show that the kernel is a subset of R2.

Let x ∈ ker(f). We may write

x =
∑

αiεi +
∑

βijs(yij)s + γ
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where αi and βijs ∈ k, and β ∈ R2. Then

f(x) =
∑

αiei +
∑

βijs(yij)s + f(γ) = 0 ∈ A.

If we look at the image of f(x) in A/J , we get f(x) + J =
∑

αiεi = 0. But εi are a basis for A/J , so αi = 0

for all i. Therefore

f(x) =
∑

βijs(yij)s + f(γ) = 0 ∈ A.

Now if we look at f(x) + J2, we see that f(x) + J2 =
∑

βijs(yij)s = 0 and hence βijs = 0 for all i, j, s. So

x = γ ∈ R2, as required.

Finally, since A is finite-dimensional, J` = 0 where ` is the Loewy length of A. We have f(R`) ⊂ J` since

f is an algebra map. Thus, R` ⊂ ker(f).

This proves everything except for the surjectivity of f , which we will prove in the next lecture. ¤

10. Lecture 10

Recap: A is an elementary algebra over an algebraically closed k. 1 =
∑

ei is a decomposition of 1 ∈ A

into pairwise orthogonal primitive idempotents. We define εi = ei + J ∈ A/J . Note that the εi form a

basis for A/J , because they are a linearly independent set in A/J , and our assumption that A is elementary

implies that dim(A/J) is equal to the number of ei (see the proof of the Artin-Wedderburn Theorem above).

The quiver Q(A) has vertices εi and the number of edges i → j is dim(εj(J/J2)εi) for all i, j. We defined a

map f : kQ(A) → A by

εi 7→ ei

(yij)s 7→ (yij)s

where {(yij)s} is a k–basis of εj(J/J2)εi and {(yij)s} ⊂ ejJei are chosen so that (yij)s + J2 = (yij)s. We

proved that f extends to a well-defined algebra map and that the kernel K satisfies Rs ⊂ K ⊂ R2 for some

s ≥ 2 where R is the arrow ideal of Q(A).

Now we will show that f is surjective. The image of f is the subalgebra of A generated by the ei and

the (yij)s. The elements {(yij)s + J2} for all i, j, s form a basis for the space J/J2 =
⊕

i,j εj(J/J2)εi. It

therefore suffices to prove the following lemma, taken from [ARS97].

Lemma 10.1. [ARS97, Theorem 1.9(a)] Let A be a finite-dimensional elementary algebra. Let e1, . . . , en

be a set of primitive orthogonal idempotents such that
∑

ei = 1. Let J be the Jacobson radical of A and let

{r1, . . . , rm} ⊂ J be such that {r1 + J2, . . . , rm + J2} is a generating set of the A/J–module J/J2. Then

{e1, . . . , en, r1, . . . , rm} generates A as an algebra.

Proof. The proof is by induction on the Loewy length ` of A. If ` = 1 then J = 0. In this case, A ∼=
k × k × · · · × k and the ei are the elements (0, 0, . . . , 1, . . . , 0) and these generate A.
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If ` = 2 then J2 = 0 and the hypothesis says that {r1, . . . , rm} generate J as an A/J–module. If a ∈ A

then a + J =
∑

λiei + J for some λi ∈ k. Therefore, a−∑
λiei ∈ the k–span of the eirj , which shows that

the algebra A is generated by {ei} ∪ {rj} in this case too.

Now we assume ` ≥ 2 and do the inductive step. Suppose we have shown it for ` ≤ m and we want to

show it for ` = m + 1. Let B ⊂ A be the subalgebra generated by the ei and the rj . We wish to show

that B = A. To do this, we consider A/Jm. This is an algebra. Because each maximal left ideal of A

contains Jm, the Jacobson radical of A/Jm is J/Jm, and (J/Jm)m = 0. Also, A/Jm is elementary because

(A/Jm)/(J/Jm) = A/J . Furthermore, the ei + Jm are primitive orthogonal idempotents in A/Jm. (I left

this last fact as an exercise in the lecture. It is true because the isomorphism (A/Jm)/(J/Jm) = A/J shows

that the maximum possible number of orthogonal idempotents in a decomposition 1 =
∑

fi is the same for

A/Jm as for A.) So, in summary, we may apply the inductive hypothesis to A/Jm.

We conclude that the natural map

B/B ∩ Jm → A/Jm

is an isomorphism.

Now let x ∈ A. Then there exists y ∈ B with x−y ∈ Jm. So x−y =
∑

αiβi where αi ∈ J and βi ∈ Jm−1.

Consider αi. There exists some ai ∈ B with αi−ai ∈ Jm. So αi = ai +a′i where a′i ∈ Jm and ai ∈ B ∩J (ai

has to be in J because ai = αi − a′i ∈ J). Similarly, βi = bi + b′i where bi ∈ B ∩ Jm−1 and b′i ∈ Jm. Thus,

x− y =
∑

(ai + a′i)(bi + b′i)

with aib
′
i ∈ Jm+1, a′ib

′
i ∈ J2m and a′ibi ∈ J2m−1. But these powers of J are all zero, because Jm+1 = 0 and

our assumption that m ≥ 2 shows that 2m− 1 ≥ m + 1. Therefore,

x− y =
∑

aibi ∈ B

and therefore x ∈ B as desired. ¤

Using the very clever argument above, copied verbatim from [ARS97], we have finished the proof of the

following Theorem.

Theorem 10.2. Let A be a finite-dimensional elementary algebra over an algebraically closed field k. Then

there is a surjective algebra map

kQ(A) → A

where Q(A) denotes the quiver of A. The kernel K of this surjection satisfies

Rs ⊂ K ⊂ R2

for some s ≥ 2, where R denotes the arrow ideal of kQ(A).

Now we want to say a bit more about the ideal K.
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Definition 10.3. A quiver with relations is a pair (Q, ρ) where Q is a quiver and ρ is a finite subset of

nonzero elements of kQ such that each element of ρ is of the form eixej where i, j ∈ Q0 and x is a sum of

paths of length ≥ 2.

We usually also insist that Rs ⊂ 〈ρ〉 where Rs denotes the arrow ideal of kQ. In this case, kQ/〈ρ〉 is a

finite-dimensional algebra, because it is a vector subspace of kQ/Rs, which is spanned by the paths in Q of

length < s.

We have almost shown that every finite-dimensional algebra is given by a quiver and relations, but we

just need to make sure that we can avoid any illegal relations.

Theorem 10.4. Every elementary algebra A is isomorphic to kQ/〈ρ〉 where (Q, ρ) is a quiver with relations.

Proof. Let f : kQ(A) → A be the surjection we constructed above and let K = ker(f). We need to

show that K is a finitely-generated ideal of kQ(A). Let {bi + Rs}n
i=1 be a basis of K/Rs. Then K =

∑
kQ(A)bikQ(A) + Rs. But Rs is generated by all paths of length s, so K is generated by the finite set of

all bi together with all paths of length s. Therefore, K is generated by some finite collection a1, a2, . . . , aN .

But if K is generated by these elements, then it is also generated by {eraies : 1 ≤ i ≤ N} where r, s

range throughout all vertices of Q(A). Each eraies is of the desired form, so ρ = {eraies} are the desired

relations. ¤

A next obvious question is: how unique is the pair (Q, ρ) associated to a given A? The surprising answer

is that Q is unique. But ρ is not unique. Here is an example.

Example 10.5. Let Q be the quiver

• α // • β
// • •γ

oo •δoo .

Then clearly 〈βα〉 6= 〈γδ〉, but kQ/〈βα〉 ∼= kQ/〈γδ〉.

In order to show that the quiver associated to a given A is unique, we require the following lemma.

Lemma 10.6. If Q is any quiver and R is the arrow ideal of kQ then the quiver of kQ/R2 is Q.

Proof. Let A = kQ/R2. We claim that the Jacobson radical of A is R/R2. Since A is a finite-dimensional

algebra, the Jacobson radical is the largest ideal consisting of nilpotent elements. Certainly R/R2 is such an

ideal. On the other hand, if x ∈ A is nilpotent then x =
∑

λiei +y where λi ∈ k, y ∈ R. Then xn =
∑

i λn
i ei

modulo R, so if x is nilpotent then λi = 0 for all i. Thus, R/R2 is precisely the set of nilpotent elements of

A, so it is the Jacobson radical.

The quiver Q(A) has vertices εi = ei +J where ei are a complete set of orthogonal primitive idempotents

in A. We have 1 =
∑

ei in A (where we write ei for the image of ei ∈ kQ in A), and the ei are orthogonal

idempotents, but we need to check they are primitive. This can be done using Fitting’s Lemma: End(Aei)
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is isomorphic to eiAei, a vector space spanned by the arrows in Q joining i to i. This need not be a one-

dimensional space, because we allow Q to have loops. However, every element is of the form αei + n where

α ∈ k and n ∈ R is nilpotent. If α = 0 then such an element is nilpotent. If α 6= 0 then such an element is a

unit, because we have the formula for the inverse of such an element in any ring, (1−n)−1 = 1+n+n2 + · · · .
Thus, every element of End(Aei) is either a unit or nilpotent, so Aei is an indecomposable module, and ei

is a primitive idempotent.

Thus, the εi are in bijection with the vertices of Q, and so the quiver of A has the same vertices as Q.

The arrows in the quiver from i to j are in bijection with a basis of the space εj(R/R2)εi, but this is the

same as the number of arrows from i to j in Q, as required. ¤

Now we prove the uniqueness of the quiver of an algebra.

Theorem 10.7. Let (Q, ρ) and (Q′, ρ′) be quivers with relations, such that Rs ⊂ 〈ρ〉 ⊂ R2 and (R′)s ⊂
〈ρ′〉 ⊂ (R′)2 where R and R′ are the arrow ideals of Q and Q′ respectively. Suppose the algebras kQ/〈ρ〉 and

kQ′/〈ρ′〉 are isomorphic. Then Q and Q′ are isomorphic quivers.

Proof. The Jacobson radical of kQ/〈ρ〉 is R/〈ρ〉. This can be proved using the same argument as given in

Lemma 10.6. Thus, if A := kQ/〈ρ〉 then A/rad(A)2 is isomorphic to both kQ/R2 and kQ′/(R′)2, so by

Lemma 10.6, the quiver of A/rad(A)2 is isomorphic to both Q and Q′. ¤

11. Lecture 11

11.1. Dealing with quivers with relations. It turns out that it is quite easy to work out the simple,

indecomposable projective and indecomposable injective modules for a quiver with relations. It is very

similar to the case of a path algebra with no relations.

Let (Q, ρ) be a quiver with relations. A representation of (Q, ρ) consists of

• A vector space Vi for each i ∈ Q0.

• A linear map φa : Vt(a) → Vh(a) for each a ∈ Q1, such that if x ∈ ρ then φx = 0.

The condition φx = 0 means the obvious thing. For example, if x is the relation ab + 3cd = 0 where a, b, c, d

are arrows, then φx denotes φaφb + 3φcφd.

It is easy to see that representations of (Q, ρ) are the same thing as kQ/〈ρ〉–modules.

Let (Q, ρ) be a quiver with relations and suppose Rs ⊂ 〈ρ〉 ⊂ R2 as usual. We now work out the

indecomposable projective left modules over the algebra A := kQ/〈ρ〉. We have the trivial idempotents

ei ∈ kQ and their images ei := ei + 〈ρ〉 in kQ/〈ρ〉. The ei are mutually orthogonal, sum to 1, and remain

primitive by the argument that was used in Lemma 10.6 (here we use the fact that Rs ⊂ 〈ρ〉 which guarantees

that every element of R is nilpotent in A). Thus, the principal indecomposable modules are Aei for i ∈ Q0.

Just as in the no-relations case, the radical of Aei is ⊕a∈Q1Aaei where a denotes the image of a in the
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quotient kQ/〈ρ〉. The head of Aei is then the representation of (Q, ρ) given by k at the vertex i and 0 at all

the other vertices.

Example 11.1. Let Q be the following quiver

•
α

)) •
δ

ii
β

// • γff

with the relations ρ = 〈γβ, γ2, δα〉. A basis of A = kQ/〈ρ〉 is given by e0, e1, e2, α, β, γ, δ, βα, βαδ, αδ (we

drop the bars for the images of elements of kQ in A), so this is a 10–dimensional algebra. If we label the

vertices 0, 1, 2 from left to right, then it is easy to compute a basis of each indecomposable projective Aei.

A basis for Ae2 is e2, γ, a basis for Ae1 is e1, δ, β, αδ, βαδ and a basis for Ae0 is e0, α, βα.

11.2. Hereditaryness. Now finally we can prove that hereditary elementary algebras are precisely the path

algebras of cycle-free quivers.

Theorem 11.2. If A is a finite-dimensional hereditary algebra over an algebraically closed field k then there

is a quiver Q with A ∼= kQ.

Proof. Let Q := Q(A) be the quiver of A. We show that Q has no cycles. To see this, suppose that

εj(J/J2)εi 6= 0 where J denotes the Jacobson radical of A, and εi = ei + J , where {ei} is a complete set

of orthogonal primitive idempotents in A. If εj(J/J2)εi 6= 0 then ejJei 6= 0 and so if x ∈ ejJei is nonzero,

then f : a 7→ ax is a nonzero A–map from Aej to Aei. The map f is not an isomorphism, or else ei would

be in the image and we would have ei ∈ J . But Im(f) ⊂ Aei is a submodule of a projective. Since A is

hereditary, Im(f) is projective, and so the sequence

0 → ker(f) → Aej → Im(f) → 0

splits. But Aej is indecomposable, and therefore f : Aej → Im(f) must be an isomorphism. So f is injective,

but not an isomorphism.

Now if Q contains a loop starting and ending at i, we get a sequence of such f ’s. Their composition is an

injective map Aei → Aei which is not an isomorphism. Since everything is finite-dimensional, this violates

linear algebra.

Thus, Q has no loops and so kQ is finite-dimensional (and hereditary). ¤

12. Lecture 12

Let us finish the proof that every hereditary elementary algebra is isomorphic to the path algebra of a

quiver. So far, we have shown that if A is an elementary hereditary algebra then the quiver Q = Q(A) of

A has no loops. We know that A is isomorphic to kQ/〈ρ〉 for some relations ρ, and we want to show that

ρ = 0. This is a consequence of the following theorem from [ARS97].
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Theorem 12.1. [ARS97, Lemma 1.11] Let A be a finite-dimensional hereditary algebra, let J = rad(A) be

its Jacobson radical, and suppose that I is a two-sided ideal of A with I ⊂ J2. Then either I = 0 or A/I is

not hereditary.

Proof. Assume A/I is hereditary. We have the ideal IJ = {∑ aibi : ai ∈ I, bi ∈ J}. This two-sided ideal is

contained within both I and J . Consider the short exact sequence of left A/I–modules:

0 → I/IJ → J/IJ → J/I → 0.

The last term J/I is projective because A/I is hereditary. Denote by f : J/IJ → J/I the natural map (which

appears in the above sequence). This map splits and so J/IJ is the sum of the submodules ker(f) = I/IJ

and another submodule T which is isomorphic to J/I. But I ⊂ J2 implies that I/IJ ⊂ rad(A/I)(J/IJ) ⊂
rad(J/IJ). Now, if T 6= J/IJ then T is contained in some maximal submodule and this is impossible. So

T = J/IJ and f is an isomorphism. Thus, I/IJ = 0 and so I = IJ . But IJ = Irad(A) ⊂ rad(I), where rad

here denotes the radical in the category of right A–modules, and this is impossible unless I = 0. ¤

Theorem 11.2 now follows immediately from the above.

Note: in the above proof, we showed in class that J/IJ was projective as well. But actually, we didn’t

need this, as one of you pointed out.

12.1. Morita Theory. We have classified the possible elementary algebras via quivers and relations. Now

we want to see how arbitrary algebras fit in. To do this, we use Morita Theory.

Definition 12.2. If A and B are algebras, A and B are said to be Morita equivalent if A−mod and B−mod

are equivalent categories.

An example of Mortia equivalent algebras which are not isomorphic are k and M2(k) where k is a field.

These two algebras are not isomorphic because M2(k) is not commutative, but the module category of k is

a semisimple category with one simple object k and Hom(k, k) = k, while the module category of M2(k) is

a semisimple category with one simple object k2, and HomM2(k)(k2, k2) = k.

We will show that every finite-dimensional algebra over C is Morita equivalent to an elementary algebra.

Definition 12.3. A module M ∈ A −mod is called a generator if every N ∈ A −mod is a quotient of a

direct sum of copies of M .

For example, A itself is always a generator.

Theorem 12.4. Let A be a finite-dimensional algebra over an algebraically closed field k. Let P be a

projective generator in A−mod. Then there is an equivalence of categories

F : A−mod → mod− S
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where S = EndA(P ). Then functor F is HomA(P,−) and its quasiinverse is G : mod− S → A−mod given

by G(N) = N ⊗S P .

Proof. In the theorem, the functors F and G make sense, because P is regarded as both a left A–module

and a left S–module, while N ⊗S P is a left A–module with the action of r ∈ A given by r(n⊗ p) = n⊗ rp.

Both F and G are functors and they preserve finite direct sums. Also, both F and G are right exact, and

therefore so are FG and GF .

We have FG(S) = F (P ) = S, so FG(
⊕n

i=1 S) =
⊕n

i=1 FG(S). Now suppose M is any right S–module.

There is a natural map M → FG(M) given by m 7→ (p 7→ m ⊗ p) ∈ HomA(P, M ⊗ P ). We wish to show

that this map is an isomorphism. There is an exact sequence

⊕

a∈A

S →
⊕

b∈B

S → M → 0

where A and B are finite sets. Using naturality of the map U → FG(U) for any U , we get the following

commutative diagram.

⊕
a∈A S //

²²

⊕
b∈B S

²²

// M

²²

// 0

⊕
a∈A FG(S) //

⊕
b∈B FG(S) // FG(M) // 0

The lower row is exact because FG is a right exact functor. The first two vertical maps are isomorphisms,

and the five-lemma then implies that the map M → FG(M) is an isomorphism as well. Since M was

arbitrary, this proves that FG is naturally isomorphic to the identity functor.

To do the same for GF , observe that GF (P ) is isomorphic to P . If M is an R–module then there is a

natural map GF (M) → M . Furthermore, there is an exact sequence

⊕

a∈A

P →
⊕

b∈B

P → M → 0

where A and B are finite sets. This is because P is a generator. As before, we get a diagram with exact

rows
⊕

a∈A P //
⊕

b∈B P // M // 0

⊕
a∈A GF (P ) //

OO

⊕
b∈B GF (P ) //

OO

GF (M) //

OO

0

and we may apply the five lemma as before to get that GF (M) → M is an isomorphism. We conclude

that GF is naturally isomorphic to the identity functor, and thus F and G are quasiinverse equivalences of

categories. ¤

Remark 12.5. The above theorem is part of Morita’s Theorem which says that any equivalence between

the module categories of a pair of rings R and S arises from a projective generator in a similar way. The
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definition of a generator is a little different if you are not dealing with finitely-generated modules. See [MR01]

for details.

The above proof was taken almost word-for-word from [Rot09].

12.2. Application. Let A be a finite-dimensional algebra. Then A = P a1
1 ⊕ · · · ⊕ P ar

r where the Pi are

the principal indecomposable A–modules. Take P := P1 ⊕ · · · ⊕ Pr. Then P is a projective generator. Let

S = EndA(P ). Then A − mod is equivalent to Sop − mod. Now, S = F (P ) = F (P1) ⊕ · · · ⊕ F (Pr), and

F is an equivalence of categories, which implies that the F (Pi) are pairwise nonisomorphic indecomposable

projectives. So the multiplicity of each indecomposable summand of S as a right S–module is one. Therefore,

the same is true of the left Sop–module Sop. Now the proof of the Artin-Wedderburn Theorem shows that

this implies that Sop/J is a product of copies of the base field k, where J is the Jacobson radical of Sop.

Thus, we have shown the following.

Theorem 12.6. If A is a finite-dimensional algebra over an algebraically closed field k, then A is Morita

equivalent to an elementary algebra.

Corollary 12.7. Every finite-dimensional C–algebra is Morita equivalent to CQ/〈ρ〉 where (Q, ρ) is a quiver

with relations.

This completes this part of the course.

Exercise 12.8. Here is an interesting exercise. Let A be an algebra and let Z(A) = {x ∈ A : xy =

yx for all y ∈ A}.
(1) Show that the set Nat(id, id) of natural transformations id → id, where id : A−mod → A−mod is

the identity functor, forms an algebra and that the algebra Nat(id, id) is isomorphic to Z(A).

(2) If A and B are commutative algebras and A and B are Morita equivalent, show that A ∼= B.
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Exercises 12.9. Here are some exercises on the material covered above.

(1) Find the simple CQ–modules and their projective covers, where Q is the following quiver

• •oo // •

•

OO

(2) Let k be an algebraically closed field. Express the algebra Tn as a quiver and relations where

Tn =




k 0 0 · · · 0

k k 0 · · · 0

k 0 k · · · 0
...

...
...

. . . 0

k 0 0 · · · k




⊂ Mn(k).

Express T op
n as a subalgebra of Mn(k) and show that T op

n � Tn.

(3) Let m,n ≥ 2. Show that the algebras C[x, y]/(xn, ym) and
∧
C2 have the same quiver but are not

isomorphic.

(4) (a) Show that every three-dimensional C–algebra is elementary.

(b) Write down a complete list of all three-dimensional C–algebras up to isomorphism.

(5) Let A = CQ/〈ρ〉 where Q is the quiver

•
γ

ÂÂ?
??

??
??

•

α
??ÄÄÄÄÄÄÄ

•β
oo

and ρ = αβγ.

(a) Write down a basis for A.

(b) Find the simple A–modules and their projective covers.

(c) Write down a composition series for each indecomposable projective.

(d) Show that A is not hereditary.

(e) Calculate the global dimension of A.

(6) Find a quiver and relations (Q, ρ) such that the algebra A is Morita equivalent to kQ/〈ρ〉, where

A =




k 0 k

0 k 0

k 0 k



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13. Lecture 13

Now we turn to the next part of the course. Remember that we want to understand the module categories

of algebras. This means that we want to calculate all the modules and the morphisms between them.

The Krull-Schmidt Theorem says that every module is a direct sum of indecomposable modules. If we

understand the maps between the indecomposables, then we can understand the maps between direct sums

of indecomposables, because maps between direct sums can be regarded as matrices whose entries are the

maps between the individual summands, if that makes sense. There are some algebras for which there are

only finitely many indecomposables.

Definition 13.1. An algebra A has finite type if it has finitely many isomorphism classes of indecomposable

modules.

For algebras of finite type, we can hope to completely describe the module category in terms of finitely

much information.

Example 13.2. Let Q be the quiver • // • . Some indecomposable kQ–modules are S0 := k → 0,

S1 := 0 → k and P0 := k → k where the map is the identity. Note that P0 is the projective cover of S0.

It is also the injective envelope of S1. We claim that this is a complete set of indecomposable kQ–modules,

so kQ has finite type. To see this, take a general module of the form M = km
A // kn . Consider the

following commutative diagram with exact columns.

0

²²

0

²²
ker(A)

²²

// 0

²²
km

A

²²

A // kn

id

²²
kn

id //

²²

kn

²²
0 0

The diagram may be regarded as a short exact sequence

0 // S⊕dim ker(A)
0

// M // P⊕n
0

// 0

in the category of representations of Q. Sine P0 is projective, so is Pn
0 , and the sequence splits. Therefore, if

M is indecomposable, we must have ker(A) = 0. A similar argument with cok(A) and using the injectivity

of P0 shows that cok(A) = 0 as well. Therefore, if A 6= 0 then A is an isomorphism and m = n. So M is of
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the form kn
A // kn . But this is isomorphic to kn

id // kn = P⊕n
0 because of the following square.

kn

id

²²

A // kn

A−1

²²
kn

id // kn

Since M is indecomposable, we have n = 1 and M ∼= P0. There was also the possibility that A = 0. But

then M ∼= Sm
0 ⊕ Sn

1 and so M ∼= S0 or M ∼= S1.

Note that it is quite straightforward to calculate the Hom–spaces between S0, S1 and P0, eg. Hom(P0, S0) =

k, Hom(P0, S1) = 0, etc. This gives us a complete description of the module category of kQ.

Example 13.3. Now consider the following quiver.

Q = • //// •

It is an exercise to check that the modules

Mλ := k
λ //
1

// k

for λ ∈ k are indecomposable and Mλ � Mµ if λ 6= µ. So kQ has infinitely many indecomposables. In fact,

it turns out that kQ is “tame” and that it is possible to determine its module category completely. We may

touch on this later.

13.1. Gabriel’s Theorem.

Theorem 13.4 (Gabriel). If Q is a quiver without oriented cycles then CQ is of finite type if and only if

the underlying graph of Q is an ADE graph.

By definition, the ADE graphs are the following.

An : • •• • • · · · •

Dn : • •• • • · · · • •

•

ÄÄ
ÄÄ

ÄÄ
ÄÄ

•

????????

E6 : • •• •• •• •

•
E7 : • •• •• •• •• •

•
E8 : • •• •• •• •• •• •

•
48



The ADE graphs appear all over mathematics. Perhaps there is some deep reason for this, but I don’t

understand why. To me, it’s just one of those mysteries like Stonehenge or whatever.

The theorem as stated is actually only part of Gabriel’s Theorem. We will give a proof due to Gabriel,

Tits and Ringel. All the details of the proof are in [CB], and we will follow this very closely. Another popular

proof of the theorem is purely algebraic and is due to Gelfand and Ponomarëv.

To prove Gabriel’s Theorem, we will show:

(1) Every quiver of finite type is ADE.

(2) Every ADE quiver is of finite type.

The key idea is to use the Tits form.

Definition 13.5. Let Q be a quiver, n = |Q0| the number of vertices of Q. The Tits form of Q is the

quadratic form q : Qn → Q defined by

q(α) =
∑

i∈Q0

α2
i −

∑

a∈Q1

αt(a)αh(a).

It turns out that the Tits form is positive definite if and only if the underlying graph of Q is ADE (notice

that q depends only on the underlying graph and not on the orientation). This is the main fact we will use

in the proof of Gabriel’s Theorem. We will show that X 7→ (dim(eiX))i∈Q0 is an injection from the set of

isomorphism classes of indecomposable representations of Q to the set {α ∈ Zn
≥0 : q(α) = 1} (actually it is

a bijection) and that the latter set is finite.

In the proof we need to use algebraic geometry, so let us review some of this. A good reference is [Sha94].

An algebraic set V ⊂ Cn is the set of common zeroes of some polynomials f1, . . . , fN ∈ C[x1, . . . , xn].

The coordinate ring of V is

C[V ] := C[x1, . . . , xn]/{f : f(x) = 0 for all x ∈ V }.

It can also be described as the ring of functions f : V → C such that f is the restriction to V of a polynomial

function on Cn.

The Zariski topology on Cn is the topology whose closed sets are the algebraic sets. We will work with

locally closed sets, that is, those sets of the form U ∩ C where U is open in the Zariski topology and C is

closed. When I say “variety”, I mean a locally closed set in Cn.

A topological space is called irreducible if any two nonempty open sets have nonempty intersection. When

we say a locally closed V ⊂ Cn is irreducible, we mean that V is irreducible when regarded as a topological

space with the subspace topology inherited from the Zariski topology on Cn.

The dimension dim(V ) of a locally closed V ⊂ Cn is the largest n such that there exists a strictly

increasing chain of irreducible closed subsets

∅ ⊂ C0 ⊂ C1 ⊂ · · · ⊂ Cn
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of V . For every such V , there is a nonempty open subset U ⊂ V such that U is a complex manifold, and

dim(V ) is the dimension of this manifold. So if you haven’t seen this notion before, the main point is that

it behaves as you would expect. For example if V = {xy = 0}, the union of the two coordinate axes in C2,

then the dimension of V is 1.

If V ⊂ Cn and W ⊂ Cm are locally closed sets, then a function f : V → W is called regular if

f = (f1, . . . , fm) where each fi ∈ C(x1, x2, . . . , xn), the field of rational functions on Cn, and all the fi

are well-defined at every point of V .

An algebraic group is a locally closed set G ⊂ CN such that there are regular maps

m : G×G → G

i : G → G

and an element 1 ∈ G such that the group axioms are satisfied, where m is multiplication and i is inversion.

An example is GLn(C) ⊂ Cn2
. This is an open set because it is given by the non-vanishing of the polynomial

function det. The multiplication map is given by polynomial functions. The inversion G → G sends a matrix

A to 1
det(A)adj(A). Each entry of this matrix is a rational function which is well-defined on the whole of G,

so this is also a regular map.

An action of an algebraic group G on a locally closed V ⊂ Cn is a regular map G × V → V which is a

group action.

13.2. Our situation. We want to apply the above in the following situation. Let Q be a quiver and

α ∈ ZQ0
≥0 = Zn

≥0 where n = |Q0|.

Definition 13.6. Define Rep(Q,α) to be the set of representations of Q with dimension vector α, where if

V is a representation of Q, the dimension vector of V is the vector dim(V ) := (dim(Vi))i∈Q0 ∈ ZQ0
≥0.

We may regard Rep(Q,α) as a copy of CN where N =
∑

a∈Q1
α(h(a))α(t(a)), because a representation

of dimension vector α is just a collection of matrices of size α(h(a))× α(t(a)) for each arrow a.

Definition 13.7. We define

GL(α) =
∏

i∈Q0

GL(αi).

The algebraic group GL(α) acts on Rep(Q,α) as follows. If φ = (φa)a∈Q1 is a representation of dimension

vector α and g = (gi)i∈Q0 ∈ GL(α) then we define

g · φ = (g−1
h(a)φagt(a))a∈Q1 .

The orbits of this action are precisely the isomorphism classes of representations of Q of dimension vector α

(often we loosely say “of dimension α”). It is worth checking this because we will use it a lot.
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14. Lecture 14

Recall our situation: G is an algebraic group acting on an irreducible variety X (in our example, X = CN ).

Assume G is also irreducible.

Theorem 14.1. The following are facts:

(1) For all x ∈ X, the orbit G · x is locally closed in X.

(2) dim(G · x) = dim(G)− dim(stabG(x)).

Proof. (Modulo some algebraic geometry).

Consider the action map G → G · x. This map is regular and its image is G · x, so G · x is an irreducible

topological space. Therefore, the closure G · x of G · x in X is also irreducible. Now apply:

Chevalley’s Theorem: If f : X → Y is a regular map between irreducible varieties X and Y then f(X) is

a finite union of locally closed subsets of Y .

Therefore, G · x =
⋃n

i=1 Ui ∩ Ci where Ui are open in X and Ci are closed in X. Let U :=
⋂n

i=1 Ui.

If y ∈ G · x ∩ U then y ∈ ⋃n
i=1 Ui ∩ Ci, and so y ∈ Ci = Ci for some i. So y ∈ Ui ∩ Ci ⊂ G · x. Thus,

G · x ∩ U ⊂ G · x. Therefore, G(G · x ∩ U) = G · x, but this is an open subset of G · x. So G · x = G · x ∩ V

for some V ⊂ X open. Thus, G · x is locally closed.

To prove the second part, apply the following theorem [Sha94, Section 6.3 Theorem 7].

If f : X → Y is a regular map where X and Y are irreducible varieties and f(X) = Y then there is a

nonempty open U ⊂ Y such that for every y ∈ U , dimf−1(y) = dim(X)− dim(Y ).

If we apply this to the action map G → G · x, it says that there is an open set on which the dimension

of the fibres equals dim(G) − dim(G · x). But in fact all the fibres are isomorphic to stabG(x) (this is one

proof that stabG(x) is an algebraic set) and so we get the desired equality. ¤

14.1. Back to our situation. X = Rep(Q,α) and G = GL(α). We prove the following theorem.

Theorem 14.2. If X ∈ Rep(Q,α) then

dim(Rep(Q,α))− dim(G ·X) = dimCEndCQ(X)− q(α).

To explain the statement: on the left, dim means the algebro-geometric dimension. On the right dimC

means the dimension as a vector space (although this equals the dimension of a vector space regarded as a

variety). The number q(α) is the Tits form of the quiver evaluated at α.

Proof. We apply the previous theorem to get

dim(G ·X) = dim(Rep(Q,α))− dim(stabG(X))

where G = GL(α). The group stabG(X) consists of those endomorphisms of X which have nonzero determi-

nant. This is an open subset of the vector space of all endomorphisms of X, and therefore its dimension equals
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dimEndCQ(X). Also, we have seen that dim(Rep(Q,α)) =
∑

a:i→j αiαj , and clearly dim(GL(α)) =
∑

i α2
i .

The definition of q now yields the desired result. ¤

Recall that q : Qn → Q is positive definite if q(α) ≥ 0 for all α ∈ Qn, and q(α) = 0 if and only if α = 0.

Lemma 14.3. If Q is a quiver without cycles and CQ is of finite type, then q is a positive definite form.

Proof. If CQ has finite type, then for each α ∈ Zn
≥0, there are finitely many isomorphism classes of modules

of dimension vector α, by the Krull-Schmidt Theorem. Therefore, there are only finitely many orbits of

GL(α) on Rep(Q,α). We always have Rep(Q,α) 6= ∅, since you can just take a representation with all maps

being 0. So we have

Rep(Q,α) =
⊔

G ·X,

the disjoint union of finitely many orbits. Thus, there must be one orbit G · X with dim(G · X) =

dim(Rep(Q,α)). Theorem 14.2 now yields q(α) = dim(EndCQ(X)) ≥ 1. Now if λ ∈ Qn then there ex-

ists m ∈ Z with m|λ| ∈ Zn
≥0, where |λ| denotes the vector with |λ|i = |λi| for each i. So q(m|λ|) ≥ 1.

But

q(m|λ|) = m2
∑

λ2
i −

∑

a:i→j

|λi||λj | ≤ m2q(λ),

so q(λ) ≥ 1/m2 > 0. ¤

Therefore, all we need to do is classify all those graphs for which the quadratic form is positive definite.

This is what we will do in the rest of this lecture. The argument is pure graph theory and requires no algebra

or geometry.

Lemma 14.4. If Γ is a connected graph, maybe with loops, then either Γ is ADE, or Γ contains one of the

following graphs as a subgraph.

Ãn, n ≥ 0 : • •• • •

•

ooooooooooooo OOOOOOOOOOOOO· · · •

D̃m,m ≥ 4 :

•

•

???????

•

•

ÄÄ
ÄÄ

ÄÄ
Ä• • · · · • •

•

ÄÄ
ÄÄ

ÄÄ
ÄÄ

•

????????

Ẽ6 : • •• •• •• •

•

•
Ẽ7 : • •• •• •• •• •• •

•
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Ẽ8 : • •• •• •• •• •• •• •

•
Here, if X ∈ {A,D, E} then X̃k has k + 1 vertices. The graph Ã0 is by definition one vertex with a loop.

The graph Ã1 consists of two vertices joined by a pair of edges.

The graphs in the list are called Euclidean or extended Dynkin graphs.

Proof. If Γ contains loops or multiple edges then Γ contains Ã0 or Ã1. If Γ has a cycle then Γ contains some

Ãn. If not, then Γ is a tree. Take a longest path in Γ. If there are no branches off this path, then Γ is An.

If there are ≥ 2 branches then Γ contains D̃n. Otherwise, there is exactly one branch, and Γ either contains

D̃n, or consists of three paths joined at a vertex x. So Γ looks like

· · · • •• •• •• • · · ·x

•
...

Now either Γ is D4 or D5 or contains Ẽ6, or else one branch from x has length 1 and the others have length

at least 2. Then either Γ is E6 or else Γ contains Ẽ7, or else the branches at x have length 1, 2 and some

number ≥ 3, and so on. ¤

Notice that the theorem does not claim there is anything magical about the ADE graphs. We could have

taken some other set of graphs and extensions of them and proved exactly the same theorem.

Definition 14.5. If Γ is a graph with no loops, we define nij to be the number of edges between i and

j, where i, j ∈ {1, 2, . . . , n}, and where {1, 2, . . . , n} is the vertex set of Γ. We define the quadratic form

qΓ : Qn → Q of Γ by

qΓ(α) =
n∑

i=1

α2
i −

∑

i<j

nijαiαj .

If Γ is the underlying graph of a quiver Q then qΓ is the Tits form of Q.

For α, β ∈ Qn we define

(α, β) = q(α + β)− q(α)− q(β).

This may also be written as

(α, β) = 2
n∑

i=1

αiβi −
∑

i<j

nij(αiβj + βiαj).

The form (−,−) is called the bilinear form of Γ.

Theorem 14.6. If Γ is a connected graph and there is a vector β 6= 0 with βi ≥ 0 for all i and (β,−) = 0,

then βi > 0 for all i and qΓ is a positive semidefinite form. Furthermore, qΓ(α) = 0 if and only if α ∈ Qβ.
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Proof. Taken from [CB, Section 4].

If βi = 0 then if αi is defined to be the standard basis vector with (αi)j = δij , we have (β, αi) =

−∑
nijβj = 0 and so βj = 0 for all j such that there is an edge between i and j. Since Γ is connected, we

get β = 0, a contradiction. So βi > 0 for all i.

Now, for all α ∈ Qn, we have

qΓ(α) =
∑

i<j

nij
βiβj

2

(
αi

βi
− αj

βj

)2

(the calculation of this is given in [CB]). In particular, qΓ is positive semidefinite. If qΓ(α) = 0 then
αi

βi
− αj

βj
= 0 for all i and j, so if we let ζ be the common value of αi/βi, then α = ζβ. Therefore, α ∈ Qβ. ¤

For each Euclidean graph, we exhibit a β with βi > 0 for all i and (β,−) = 0. It can be checked that the

given β has these properties via an explicit calculation (it is enough to show (β, αi) = 0 for each standard

basis vector αi).

Ãn, n ≥ 0 : 1 11 1 1

1

ooooooooooooo OOOOOOOOOOOOO· · · 1

D̃m,m ≥ 4 :

1

2

???????

1ÄÄ
ÄÄ

ÄÄ
ÄÄ 2 · · · 2 2

1

ÄÄ
ÄÄ

ÄÄ
ÄÄ

1

????????

Ẽ6 : 1 2 3 2 1

2

1

Ẽ7 : 1 2 3 4 3 2 1

2

Ẽ8 : 2 44 66 55 44 33 2 1

3
Therefore, qΓ is positive semidefinite for each Euclidean graph Γ.

Now if Γ is ADE then Γ ( Γ′ with Γ′ Euclidean and Γ′ having one more vertex than Γ. The value of

qΓ at α ∈ Qn is the value of qΓ′ at the vector α extended by 0 at the extra vertex of Γ′. So qΓ is positive

semidefinite and qΓ(α) = 0 implies α ∈ Qβ which implies α = 0 since αe = 0 where e is the extra vertex of

Γ′. So qΓ is positive definite.

Conversely, suppose qΓ is positive definite. Suppose Γ is not ADE. Then Γ ) Γ′ with Γ′ Euclidean, by

Lemma 14.4. If Γ′ contains all the vertices of Γ, then qΓ(β) < qΓ′(β) = 0, a contradiction to qΓ positive

definite. Therefore, there is a vertex k of Γ not in Γ′. Take α := 2β + αk where αk is the standard basis

vector, and β is regarded as a vector in Qn (where n is the number of vertices of Γ) via extension by zero.
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Then an explicit check using the definition of qΓ shows that qΓ(α) < 4qΓ′(β) = 0, which again contradicts

that qΓ is positive definite. Thus Γ is ADE.

Theorem 14.7. If Γ is a connected graph with no loops then qΓ is positive definite if and only if Γ is ADE.

Corollary 14.8 (Half of Gabriel’s Theorem). If Q is a quiver and CQ is finite-dimensional and of finite

type then the underlying graph of Q is ADE.

15. Lecture 15

In the last lecture, we showed that if Q is a quiver without oriented cycles, then if CQ has finite type, then

q is positive definite. We then showed that q is positive definite if and only if the underlying (connected)

graph is ADE. This proves half of Gabriel’s Theorem.

Now we want to show that every quiver whose underlying graph is ADE has finite type. Again, the proof

is copied from [CB].

Lemma 15.1. Suppose X ∈ Rep(Q, α). Then

dimEndCQ(X)− q(α) = dimExt1CQ(X, X).

Proof. Recall the standard resolution of X.

0 →
⊕

a∈Q1

Aeh(a) ⊗C et(a)X →
⊕

i∈Q0

Aei ⊗C eiX → X → 0

This sequence is exact. Apply Hom(−, X) and use the long exact Ext–sequence. This gives a sequence

0 → Hom(X,X) → Hom(
⊕

i∈Q0

Ae
dim(eiX)
i , X) → Hom(

⊕

a∈Q1

Ae
dim(et(a)X)

h(a) , X) → Ext1(X, X) → 0

The alternating sum of the dimensions of the terms is zero, because the sequence is exact. This yields

dimEnd(X)−
∑

i∈Q0

dim(eiX)dimHom(Aei, X) +
∑

a∈Q1

dim(et(a)X)dimHom(Aeh(a), X)− dimExt1(X,X) = 0.

Now using the isomorphism of vector spaces Hom(Ae, X) ∼= eX gives the desired result, because if X is

regarded as a representation of Q, then the dimension vector of X is α = (dim(eiX))i∈Q0 . ¤

We aim to show that if X is indecomposable then q(dim(X)) = 1.

Definition 15.2. If A is an algebra and M is an A–module then M is called a brick if dimEndA(M) = 1.

Fitting’s Lemma shows that every brick is indecomposable. Not every indecomposabale module is a brick,

for example if A = C[x]/(x2) then the A–module A is not a brick.

The following key lemma is due to Ringel. The lemma and its proof are taken from [CB, Section 2, Lemma

2].
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Lemma 15.3. Let A be a hereditary C–algebra and X an indecomposable A–module which is not a brick.

Then X has a submodule U such that U is a brick and Ext1(U,U) 6= 0.

Proof. We show that there exists U ( X such that U is indecomposable and Ext1(U,U) 6= 0. If U is not a

brick, we can then repeat and use induction on dim(X) to get the result.

Since X is not a brick, by Fitting’s Lemma there exists some θ ∈ End(X) such that θ is not an isomorphism.

Indeed, given a θ ∈ End(X) which is not a scalar multiple of the identity, pick an eigenvalue λ of θ. Then

θ − λ1 is a nonzero nonisomorphism.

Now choose θ ∈ End(X) such that Im(θ) has the smallest possible dimension among θ with Im(θ) 6= 0.

Then Im(θ) 6= X because we have already shown that there is some endomorphism of X which is not

surjective. So θ must be nilpotent, by Fitting’s Lemma.

Now θ2 is another endomorphism of X and Im(θ2) ⊂ Im(θ). If this is an equality, then Im(θn) = Im(θ)

for all n, which is impossible since θ is nilpotent. Therefore, Im(θ2) ( Im(θ) and we get θ2 = 0 by choice of

θ.

Let {Kj} be the indecomposable summands of ker(θ). Then there is some j such that the composition

α : Im(θ) ↪→ ker(θ) ³ Kj

is nonzero. Define U := Kj . Then U is indecomposable, so we need to check that Ext1(U,U) 6= 0. We first

show that ker(α) = 0. Indeed, Im(α) is also the image of the composition

X
θ // Im(θ)

α // Kj // X

and if ker(α) 6= 0, then this has dimension strictly less than dim(Im(θ)), which contradicts the choice of θ.

Therefore, ker(α) = 0.

Now we have a short exact sequence

0 → Im(θ) → Kj → cok(α) → 0

Applying the long exact Ext–sequence and using Ext2 = 0, we get an exact sequence

Ext1(cok(α),Kj) → Ext1(Kj , Kj) → Ext1(Im(θ),Kj) → 0

and so it suffices to show that Ext1(Im(θ),Kj) 6= 0. Suppose Ext1(Im(θ), Kj) = 0. Then the following short

exact sequence splits (here we are using a property of Ext1, namely that Ext1(X, Y ) = 0 if and only if every

short exact sequence 0 → Y → Z → X → 0 is split. This can be proved using the long exact sequence for

Ext.)

0 → Kj → Kj ⊕X/{(−πj(x), x) : x ∈ ker(θ)} → Im(θ) → 0.

In the above sequence, the first map is k 7→ (k, 0) and the second map is (k, x) 7→ θ(x). The middle term

is the quotient of Kj ⊕ X by the submodule {(−πj(x), x) : x ∈ ker(θ)}, where πj : ker(θ) → Kj denotes
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the projection. It is easy to check that the sequence is well-defined and exact by a direct calculation. The

middle term is the pushout of the diagram

ker(θ)

πj

²²

// X

Kj

which does not come out of nowhere, but is a standard construction in homological algebra (see [Rot09]).

Anyway, assuming Ext1(Im(θ),Kj) = 0, the above sequence splits, and so there is a map λ : Kj ⊕
X/{(−πj(x), x) : x ∈ ker(θ)} → Kj such that λ(k, 0) = k for k ∈ Kj . Denote by γ : X → Kj ⊕
X/{(−πj(x), x) : x ∈ ker(θ)} the map γ : x 7→ (0, x) and denote by ι the inclusion of Kj in X. Then for

k ∈ Kj , λγι(k) = λ(0, k) = λ(πj(k), 0) = λ(k, 0) = k. Therefore, the sequence

0 // Kj
ι // X // cok(ι) // 0

splits. It follows that X is decomposable, a contradiction. ¤

Definition 15.4. If Γ is an ADE or Euclidean graph with vertex set {1, 2, . . . , n}, then α ∈ Zn
≥0 is a root

if qΓ(α) ≤ 1. If Q is a quiver then a root of Q is a root of the underlying graph of Q.

The following theorem and its elegant proof come from [CB, Section 5].

Theorem 15.5. If Q is a quiver with underlying graph ADE, then there is an injection from the set of

isomorphism classes of indecomposable CQ–modules to the set of roots, given by X 7→ dim(X).

Proof. Let X be an indecomposable CQ–module. If X is not a brick, then by Lemma 15.3, there exists

U ⊂ X such that U is a brick and Ext1(U,U) 6= 0. But then by Lemma 15.1, we have q(dim(U)) =

1− dimExt1(U,U) ≤ 0, which contradicts that q is positive definite. So X is a brick. Therefore, by Lemma

15.1 again, we have q(dim(X)) = 1 − dimExt1(X,X) > 0. So Ext1(X, X) = 0 and q(dim(X)) = 1, so

dim(X) is a root.

Now, if X,Y are indecomposable and dim(X) = dim(Y ) =: α, consider the orbits G · X and G · Y in

Rep(Q, α). Recall that

dimRep(Q, α)− dim(G ·X) = dimEndCQ(X)− q(α).

Since q(α) = 1, we get that dim(G · X) = dimRep(Q,α). So G ·X = Rep(Q, α) by our definition of

dimension. But G ·X is open in G ·X, hence is open in Rep(Q,α). Similarly, G · Y is open in Rep(Q,α).

But Rep(Q,α) is just a copy of CN , so is irreducible. Therefore, G ·X ∩G · Y 6= ∅. So G ·X = G · Y and

X and Y are in the same orbit, so are isomorphic. This proves that X 7→ dim(X) is an injection. ¤
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16. Lecture 16

To finish the proof of Gabriel’s Theorem, we just need to show that the set of roots of an ADE graph is

finite. Note that in the ADE case, α is a root if and only if q(α) = 1. Recall also that if Γ is a Euclidean

graph then qΓ is positive semidefinite and there is a β ∈ Zn
≥0 (n = number of vertices of Γ) such that

qΓ(α) = 0 if and only if α ∈ Qβ. We use the following lemma.

Lemma 16.1. If α is a root of a Euclidean graph Γ then either αi ≥ 0 for all i or αi ≤ 0 for all i.

Proof. Suppose Γ is Euclidean and α is a root. Write q = qΓ. Write α = α+ + α− with (α+)i ≥ 0 for all i,

(α−)i ≤ 0 and (α+)i(α−)i = 0. Then since α is a root, q(α) = q(α+ + α−) ≤ 1. So we have

q(α+) + q(α−) + (α+, α−) ≤ 1.

Now, by definition of (−,−), (α+, α−) ≥ 0 and so

q(α+) + q(α−) ≤ 1.

It follows that either q(α+) = 0 or q(α−) = 0. Say q(α+) = 0. Then either α+ = 0 or α+ is a multiple of β

and so (α+)i 6= 0 for all i, whence α− = 0. So either α = α+ or α = α− as required. Similarly, the same

conclusion is reached if q(α−) = 0. ¤

Lemma 16.2. If Γ is an ADE graph then the set of roots of Γ is finite.

Proof. Suppose Γ has n vertices. Let Γ ( Γ′ with Γ′ Euclidean and Γ′ having one extra vertex e /∈ Γ. Let

α be a root of Γ. Then regard α as a vector in Zn+1
≥0 by putting αe = 0. We then have qΓ′(α ± β) = 1. So

α + β and α− β are roots of Γ′. But (α + β)e > 0 and so by the previous lemma, αi ≥ −βi for all i. Also,

(α − β)e < 0 and so αi ≤ βi for all i. Therefore, −βi ≤ αi ≤ βi for all i and it follows that the number of

possible α is finite. ¤

Corollary 16.3. If Q is a quiver without cycles whose underlying graph is ADE then CQ is of finite type.

This completes the proof of Gabriel’s Theorem.

16.1. Roots. Let Q be an ADE quiver. Then R = {α : q(α) = 1} is a root system in Qn. That is, it satisfies

the following axioms.

(1) R spans Qn and is a finite set.

(2) α ∈ R =⇒ −α ∈ R but kα /∈ R if k 6= ±1.

(3) α, β ∈ R =⇒ α− 2 (α,β)
(β,β)β ∈ R.

(4) 2 (β,α)
(β,β) ∈ Z for all α, β ∈ R.
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Let Q = • // • . Then the roots are ±(0, 1), ±(1, 0), ±(1, 1).

If we graph the elements of R, they look like this.
OO

²²

oo //

??ÄÄÄÄÄÄÄÄÄ

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

If you have taken a Lie algebras course, this might not look like one of the familiar root systems. However,

this is only because the inner product we are using on Q2 is not the usual one. After an appropriate change

of coordinates, this is in fact the root system of type A2.

Further analysis (see [CB]) shows that for an ADE quiver, there is a bijection between isomorphism classes

of indecomposable modules and positive roots, given by X 7→ dim(X). In [CB], the same thing is proved for

Euclidean graphs as well. For example, if Q = • // // • , then the quadratic form is q(α0, α1) = (α0−α1)2

and the dimension vectors of indecomposable representations are (a + 1, a + 1), (a + 1, a) and (a, a + 1),

a ≥ 0.

The ultimate version of the theorem is Kac’ Theorem, which we now describe without proof.

16.2. Kac’ Theorem. Let Γ be a connected graph without vertex loops. Let the vertices of Γ be {1, 2, . . . , n}.
For i < j, let nij be the number of edges between i and j. Define the form qΓ as before, and the associated

bilinear form by (αi, αi) = 2, (αi, αj) = −nij where i 6= j. Here, αi is the standard basis vector with jth

entry (αi)j = δij .

For 1 ≤ i ≤ n, define ri : Qn → Qn by

ri(λ) = λ− 2
(λ, αi)
(αi, αi)

αi

then ri(Zn) ⊂ Zn, and ri is a reflection, that is, ri(αi) = −αi and ri(λ) = λ if (λ, αi) = 0, and r2
i = 1.

Definition 16.4. The Weyl group of Γ is the subgroup of GL(Qn) generated by r1, r2, . . . , rn.

Write Π = {α1, α2, . . . , αn} and define

M := {α ∈ Zn
≥0 \ {0} : (α, αi) ≤ 0 for all i}

Definition 16.5. The root system of Γ is the set

∆(Γ) = W (Π) ∪W (M) ∪W (−M).

Here is one version of Kac’ Theorem (not the strongest possible statement).

Theorem 16.6 (Kac). Let Q be a connected quiver over C with no oriented cycles. Let α ∈ Zn.

(1) There exists an indecomposable representation of dimension α if and only if α ∈ ∆(Γ) ∩ Zn
≥0.

(2) There exists a unique indecomposable representation of dimension α if and only if α ∈ W (Π).
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In the case of an ADE quiver, M = ∅ and ∆(Γ) = W (Π). There is an indecomposable representation of

dimension α if and only if q(α) = 1. We have seen that the set of roots is finite, and it is clearly invariant

under W . Kac’ Theorem asserts that in fact every α with q(α) = 1 is in the orbit of Π under W . In the

Euclidean case, M = Z≥0β \ {0} and q(α) = 0 if and only if α ∈ W (M) ∪W (−M) ∪ {0}.
The proof of the theorem is quite difficult and involves a reduction to characteristic p and counting over

finite fields. The proof can be found in [Kac83b].

We now explain the meaning of the term “root system” and the connection to Lie algebras. We don’t

give the definition of Lie algebras since everybody in the class knew it already. Given a graph Γ as above,

we define a C–Lie algebra g̃(Γ) via generators and relations. The generators of g̃(Γ) consist of a vector space

h with basis α1, . . . , αn, together with symbols ei, fi, 1 ≤ i ≤ n. The form (−,−) is extended to h linearly.

The relations are as follows.

[ei, fj ] = δijαj

[h, h′] = 0 for h, h′ ∈ h

[h, ei] = (h, αi)ei for h ∈ h

[h, fi] = −(h, αi)fi for h ∈ h

The relations say that ei and fi are eigenvectors for the action of h with eigenvalue (αi,−), −(αi,−)

respectively. Although it needs to be proved carefully, it is intuitively quite clear that we should have the

following root space decomposition

g̃(Γ) =


 ⊕

α∈∑Z≥0αi\{0}
g̃(Γ)−α


⊕ h⊕


 ⊕

α∈∑Z≥0αi\{0}
g̃(Γ)α




where

g̃(Γ)α := {x ∈ g̃(Γ)α : [h, x] = (α, h)x for all h ∈ h}.

Fact: there is a unique ideal a which is the largest ideal with the property that a ∩ h = 0.

Definition 16.7. The Kac-Moody algebra of Γ is

g(Γ) := g̃(Γ)/a.

Fact: there is still a root space decomposition g(Γ) =
⊕

gα. We say α is a root if g(Γ)α 6= 0.

Theorem 16.8. The roots of g(Γ) are precisely the set ∆(Γ) defined above.

For a proof of the above facts and the theorem, see [Kac83a, Sections 5.1, 5.2, Theorem 5.4].

The theorem indicates a deep connection between the representation theory of quivers and the represen-

tation theory of infinite-dimensional Lie algebras.
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17. Lecture 17

17.1. Auslander-Reiten Theory. We are now going to begin a new topic: Auslander-Reiten theory. This

is something you often see in talks about finite-dimensional algebras, and is much studied at the moment.

Each finite-dimensional algebra has an Auslander-Reiten quiver, which is a (possibly infinite) directed graph

which can be viewed as an approximation to the module category. Recall that our goal is to understand the

module category of an algebra. To do this we have to write down all the modules and the homomorphisms

between them and say how the homomorphisms compose. The Krull-Schmidt Theorem reduces this problem

to only looking at the indecomposable modules, since maps between direct sums of modules can be viewed

as matrices. However, all this data is still hard to calculate. The Auslander-Reiten quiver can be viewed as

a kind of first approximation to this. Another way of looking at it is as follows: for any algebra A, there

are certain exact sequences over A which are non-split but very special. These sequences were discovered

by Auslander and Reiten and are called Auslander-Reiten sequences. It turns out that they are of great

theoretical importance. The Auslander-Reiten quiver is simply a way of writing down all the modules, but

not the maps, in the Auslander-Reiten sequences over A.

Given an algebra A, the Auslander-Reiten quiver Q is defined as follows.

(1) The vertices of Q are the isomorphism classes of indecomposable A–modules.

(2) Given two isomorphism classes X and Y , the number of arrows from X to Y is the dimension of the

vector space

rad(X, Y )/rad2(X, Y )

where

rad(X,Y ) := {f : X → Y : f is not an isomorphism}

and rad2(X,Y ) is the span of all the maps gh : X → Y where h : X → Z, g : Z → Y for some Z,

and h ∈ rad(X,Z), g ∈ rad(Z, Y ) (note: we haven’t defined rad(X, Z) yet for arbitrary Z).

It should not be obvious at this point that rad(X,Y )/rad2(X,Y ) is a vector space; we will prove

this today.

(3) The Auslander-Reiten quiver has vertices, arrows and a third extra structure called the Auslander-

Reiten translate τ . This is very important, but we will not define it until later.

Here are some reasons why the Auslander-Reiten (or AR) quiver is important:

(1) It is often computable.

(2) It is useful in applications. For example, it was originally invented to prove the First Brauer-

Thrall conjecture. This conjecture states that if A is a finite-dimensional algebra and there is a

number N such that dim(X) < N for every indecomposable A–module X, then A is of finite type.

Unfortunately, we haven’t seen enough examples to have a good idea of why such a statement might

be true.
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Most of the time, we will follow either [ASS06] or [ARS97] as indicated in the notes.

17.2. The radical of a category. To start with, we are going to generalise the notion of the Jacobson

radical of a ring to categories. Recall that if R is a ring, one of the definitions of the Jacobson radical of R is

J(R) = {x ∈ R : 1− ax is a unit for all a ∈ R}.

Definition 17.1. Let A be a finite-dimensional algebra and let X, Y be A–modules. We define

rad(X, Y ) = {f : X → Y |∀g : Y → X, 1X − gf is an isomorphism}.

Proposition 17.2. If X and Y are indecomposable then f ∈ rad(X,Y ) if and only if f is not an isomor-

phism.

Proof. If f is an isomorphism then 1X − f−1f = 0 so f /∈ rad(X, Y ).

Conversely, if f is not an isomorphism then let g : Y → X. We show first that gf is not an isomorphism.

Suppose gf is an isomorphism. Let e = f(gf)−1g ∈ End(Y ). Then e2 = e so e is not nilpotent. By Fitting’s

Lemma, e is an isomorphism. But e2 = e so e = 1Y . Therefore, (gf)−1g is an inverse to f , which contradicts

that f is not an isomorphism. Thus, gf is not an isomorphism.

By Fitting’s Lemma, if gf ∈ End(X) is not an isomorphism, then it must be nilpotent. So 1X − gf is a

unit, which says that f ∈ rad(X, Y ). ¤

Lemma 17.3. If f ∈ rad(X, Y ) and g : Y → Z and h : W → X then gf ∈ rad(X,Z) and fh ∈ rad(W,Y ).

Proof. For gf , it’s obvious because if v : Z → X then 1X − vgf is invertible by the assumption that

f ∈ rad(X, Y ).

For fh : W → Y , let u : Y → W . We want to show that 1W − ufh is invertible. Since f ∈ rad(X, Y ),

1X − huf is invertible. Now you can check explicitly that 1W + uf(1X − huf)−1h is a two-sided inverse to

1W − ufh, as required. ¤

Proposition 17.4. For any modules X, Y , rad(X,Y ) is a vector space.

Proof. If f ∈ rad(X, Y ) and λ ∈ k (k is the base field) then λf ∈ rad(X, Y ); this is obvious.

Now let f1, f2 ∈ rad(X, Y ) and let g : Y → X. We need to show that 1X − g(f1 + f2) has an inverse.

First, 1X − gf1 has an inverse, say t. So t(1X − g(f1 + f2)) = t(1X − gf1)− tgf2 = 1X − tgf2. Now, by the

previous lemma, 1X − tgf2 has an inverse, say t′. So t′t(1X − g(f1 + f2)) = 1X .

Next, 1x − gf2 has an inverse u′ so (1X − g(f1 + f2))u′ = 1X − gf1u
′. Now, f1u

′ ∈ rad(X, Y ) by the

previous lemma, and so 1X − gf1u
′ has an inverse u. Therefore, (1X − g(f1 + f2))u′u = 1X . From this,

together with t′t(1X − g(f1 + f2)) = 1X , we conclude that u′u = t′t = (1X − g(f1 + f2))−1 ¤

We have proved that rad(X, Y )/rad2(X, Y ) is a well-defined vector space. Now we want to interpret its

meaning in terms of irreducible maps.
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17.3. Irreducible maps. If we want to make a picture of the module category, it is a good idea to try to

get rid of the morphisms which are compositions of other morphisms, and just keep the ones which can’t be

decomposed any further. The motivation for the definition of an irreducible map is to look for a suitable

definition of a map which can’t be broken down as the composition of other maps. A first guess is:

Wrong Definition 17.5. f : X → Y is irreducible if f is not an isomorphism and if f = f1f2 then either

f1 or f2 is an isomorphism.

Unfortunately, the set of such maps is empty. This is because every f : X → Y can be factorised as

follows:

X
f

//

##FF
FF

FF
FF

F Y

X ⊕ Z

(f,0)

<<xxxxxxxxx

Here, Z is arbitrary and X → X⊕Z is the inclusion of X as a direct summand, and the map (f, 0) is defined

by (f, 0)(x, z) = f(x) + 0(z) = f(x). (The reason for the notation (f, 0) is that it is customary to think of

the elements of X ⊕ Z as column vectors, and (f, 0) as a 1× 2 matrix.)

Also, every f : X → Y can be factorised as follows,

X
f

//

""FF
FF

FF
FF

F Y

Y ⊕ Z

πY

<<xxxxxxxxx

where the map X → Y ⊕ Z is x 7→ (f(x), 0), and πY is the projection. Again, Z can be arbitrary.

Thus, Wrong Definition 17.5 has to be replaced by something which rules out the two factorisations above.

Definition 17.6. We say:

a : X → Y is a split monomorphism if there exists b : Y → X with ba = 1X .

a : X → Y is a split epimorphism if there exists b : Y → X with ab = 1Y .

By the familiar characterisations of split exact sequences, a split monomorphism is just the inclusion of a

direct summand, possibly pre- and post-composed with isomorphisms, and a split epimorphism is just the

projection onto a direct summand, possibly pre- and post-composed with isomorphisms.

Definition 17.7. f : X → Y is irreducible if f is not split mono or split epi and if f = hg then either g is

split mono or h is split epi.

Examples 17.8. A non-example:

• If S is simple then by Schur’s Lemma there are no irreducible maps S → S, because an irreducible

map can neither be 0 nor an isomorphism.
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• If P is an indecomposable projective and rad(P ) 6= 0 then the inclusion map i : rad(P ) → P is

irreducible. Prove this as an exercise (I will do it next time).

18. Lecture 18

We left off with the statement that if P is an indecomposable projective with rad(P ) 6= 0 then i :

rad(P ) → P is an irreducible map. Recall that rad(P ) is the unique maximal submodule of P . To show

that i is irreducible, first we note that i is not split epi because i is not an epimorphism, and i is not split

mono because P is an indecomposable module. Now suppose there is a factorisation i = hg.

rad(P )
i //

g
""EE

EE
EE

EE
E

P

Z

h

??¡¡¡¡¡¡¡¡

Consider h(Z). If h(Z) = P then 0 → ker(h) → Z → P → 0 is a short exact sequence and it splits because

P is projective. So h is split epi. If not, then h(Z) is a proper submodule of P and so h(Z) ⊂ rad(P ). So

for x ∈ rad(P ), hg(x) = ix = x and therefore g is split mono.

Another fact is that irreducible maps are either injective or surjective. If f : X → Y is irreducible then f

may be factorised as

X
f

//

f ""DD
DD

DD
DD

Y

im(f)
i

<<zzzzzzzz

where i is the inclusion. Then either i is surjective in which case f is surjective, or else f is injective, in

which case f is injective.

The examples suggest that irreducible maps are quite scarce (as you will see if you try to think up further

examples of them). Now we relate them to rad/rad2.

Theorem 18.1. Let X and Y be indecomposable. Then f : X → Y is irreducible if and only if f ∈
rad(X, Y ) \ rad2(X, Y ) (where \ denotes the set difference).

Proof. Suppose f : X → Y is irreducible. Then f is not an isomorphism and so f ∈ rad(X,Y ) by Proposition

17.2. If f ∈ rad2(X,Y ), then we claim that f can be written as f = hg where g ∈ rad(X, Z) and h ∈ rad(Z, Y )

for some Z. In order to see this, observe that by definition, f is a finite linear combination of higi where

gi ∈ rad(X, Zi) and hi ∈ rad(Zi, Y ) for some Zi. But if f = h1g1 + h2g2 then we may write f as

X
f

//

( g1
g2 ) ##GGGGGGGGG Y

Z1 ⊕ Z2

(h1,h2)

;;wwwwwwwww
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and you can check that ( g1
g2 ) and (h1, h2) belong to the respective radicals (note, though, that the Zi are not

assumed to be indecomposable). Continuing inductively on the number of summands in f =
∑

higi yields

f = hg where g ∈ rad(X,Z) and h ∈ rad(Z, Y ) for some Z, as required.

Now, since f is irreducible, either h is a split epimorphism or g is a split monomorphism. If g is a

split monomorphism then there is some u : Z → X with ug = 1X and so 1X − ug = 0 which contradicts

g ∈ rad(X, Z). So h is a split epimorphism. But then there is a v : Y → Z with hv = 1Y . But hv ∈ rad(Y, Y )

by Lemma 17.3, so 1Y ∈ rad(Y, Y ), a contradiction. Thus, f /∈ rad2(X, Y ).

Conversely, suppose f ∈ rad(X, Y ) \ rad2(X, Y ). Since X and Y are indecomposable and f is not an

isomorphism, f cannot be either split mono or split epi. Now suppose f = hg where

X
f

//

g ÃÃ@
@@

@@
@@

Y

Z

h

??~~~~~~~

and write Z =
⊕

Zi as a direct sum of indecomposables Zi. Let ji : Zi → Z be the ith inclusion and let

πi : Z → Zi be the ith surjection. Then f =
∑

higi where hi = hji and gi = πig. Some hi or gi must be an

isomorphism or else f ∈ rad2. But if hi is an isomorphism then h(jih
−1
i ) = 1Y and so h is split epi, and if

gi is an isomorphism then g−1
i πig = 1X and so g is split mono. Thus, f is irreducible. ¤

Thanks to Shisen for considerably simplifying the above proof!

Definition 18.2. If X and Y are indecomposable modules, then we define

Irr(X,Y ) := rad(X,Y )/rad2(X,Y )

and call it “the space of irreducible maps from X to Y ” (an incredibly bad name, because it isn’t!)

We see that the spaces whose dimensions give the number of arrows in the AR quiver are related to the

number of maps which can’t be factorised.

18.1. Auslander-Reiten sequences. Now we are ready to define AR sequences.

Definition 18.3. An Auslander-Reiten sequence is a short exact sequence

0 // X
g

// M
f

// Y // 0

in which X and Y are indecomposable modules and f and g are irreducible maps.

Because irreducible maps are scarce, so are Auslander-Reiten sequences. Note that if Y is projective

then there cannot be an AR sequence ending in Y . Similarly, if X is injective then there cannot be an AR

sequence ending in X.

A famous theorem of Auslander and Reiten states:
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Theorem 18.4 (Auslander, Reiten 1975). If Y is a non-projective indecomposable module then there exists

an indecomposable module τY and an AR sequence

0 → τY → M → Y → 0.

Furthermore ,if

0 → Z → N → Y → 0

is an AR sequence, then Z ∼= τY and N ∼= M . (In fact, the two sequences are isomorphic.)

The dual theorem is also true: if X is a non-injective indecomposable then there is an indecomposable

module τ−1X and an AR sequence

0 → X → M → τ−1X → 0

etc.

The module τY appearing in the Auslander-Reiten Theorem is called the Auslander-Reiten translate. It

can be defined via homological algebra, and we describe how to do this in the next lecture.

19. Lecture 19

Today’s topic is the Auslander-Reiten translate. There are several ingredients that go into this. One is

the functor D : A−mod → mod− A which was defined above as DX = Homk(X, k). We also want to use

another functor A−mod → mod−A defined as HomA(−, A). We now list some properties of this functor.

19.1. Homming into A. If M is a left A–module then HomA(M,A) is a right A–module. The right A–

module structure is defined by: if φ ∈ HomA(M, A) and a ∈ A then (φ · a)(m) = φ(m)a. Similarly, if M is a

right A–module then HomA(M, A) is a left A–module.

For any A–module N , there is a natural map

ηN : N → HomA(HomA(N, A), A)

where the first HomA means homomorphisms of right A–modules. This natural map is defined by n ∈ N 7→
(φn : ψ 7→ ψ(n)). In other words, it is given by “evaluation at n”. It is easy to check that ηA : A →
HomA(HomA(A,A), A) is an isomorphism of left A–modules. Since Hom preserves finite direct sums, ηA⊕n

is also an isomorphism for any n.

If P is projective then there exists Q with P ⊕Q = A⊕n. So

ηP⊕Q : P ⊕Q → HomA(HomA(P, A), A)⊕HomA(HomA(Q,A), A)

is an isomorphism. But ηP⊕Q is given by 
ηP 0

0 ηQ




and therefore ηP is also an isomorphism.
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We conclude that HomA(−, A) induces a contravariant equivalence of categories

A− proj → proj−A

where proj−A, A− proj denote the categories of finite-dimensional right and left A–modules respectively.

19.2. Minimal presentations. Now we discuss minimal presentations of a module. If M is a module, then

let P0 → M → 0 be a projective cover. Let P1 → ker(P0 → M) be a projective cover. Then the exact

sequence

P1 → P0 → M → 0

is called a minimal presentation of M . You can continue the process forever and get what is called a minimal

resolution, but we are only interested in the P1 and P0 terms.

Given a left A-module M , take a minimal presentation

P1 → P0 → M → 0

and let β : P1 → P0 be the map in this sequence. Apply HomA(−, A) to obtain a map of right A–modules

β∗ : HomA(P0, A) → HomA(P1, A).

Definition 19.1. The transpose of M is defined to be Tr(M) := cok(β∗).

The Auslander-Reiten translate of M is the left A–module τM := DTr(M).

Examples 19.2. (1) Suppose P is projective. Then a minimal presentation of P is

0 → 0 → P → P → 0

and Tr(P ) = cok(HomA(P, A) → 0) = 0.

(2) Suppose A is hereditary. Then if M is a left A–module, and P0 → M is a projective cover, then

ker(P0 → M) is projective. So there is an exact sequence

0 → P1 → P0 → M → 0

which is a minimal presentation of M . Applying HomA(−, A) and writing down the long exact Ext

sequence yields

0 → HomA(M,A) → HomA(P0, A) → HomA(P1, A) → Ext1A(M,A) → 0

because P0 is projective and so Ext1(P0,−) = 0. Thus, for a hereditary algebra A, we have Tr =

Ext1A(−, A) and so Tr is a functor in this case. In general, Tr need not be a functor.

The main reason for being interested in Tr is that it takes indecomposable modules to indecomposable

modules. We have the following theorem.

Theorem 19.3. Let M be a left A–module.
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(1) Tr(M) = 0 if and only if M is projective.

(2) If M is indecomposable and not projective then Tr(Tr(M)) ∼= M .

(3) If M is indecomposable and not projective then Tr(M) is indecomposable.

Proof. For the first part, we have already shown that M projective =⇒ Tr(M) = 0. Conversely, suppose

Tr(M) = 0. Then if P1 → P0 → M → 0 is a minimal presentation, then because HomA(−, A) is a left exact

functor, we get an exact sequence

0 → HomA(M,A) → HomA(P0, A) → HomA(P1, A) → 0.

Since Hom(Pi, A) is projective for i = 0, 1, the sequence splits, and so there exists λ : HomA(P1, A) →
HomA(P0, A) with β∗λ = id, where β : P1 → P0 is the map appearing in the minimal presentation of M .

Taking the dual HomA(−, A) again, we obtain λ∗β = id which implies that β is injective and the sequence

0 // P1

β
// P0

// M // 0

splits. So M is a summand of P0, hence is projective.

For the second part, suppose M is indecomposable and not projective. Then Tr(M) 6= 0. Writing P ∗i as

shorthand for HomA(Pi, A), Tr(M) is defined as the cokernel of

P ∗0
β∗

// P ∗1
π // Tr(M) // 0 (2)

where

P1

β
// P0

// M // 0

is a minimal presentation of M . We wish to show that (2) is a minimal presentation of Tr(M). All the

books say that this is obvious, but it isn’t obvious to me. The best argument I could come up with is the

following (based on [ASS06]). Let Q1 be the projective cover of Tr(M). Then P ∗1 ³ Q1 and so P ∗1 ∼= Q1⊕Q′

for some Q′. Furthermore, if π : P ∗1 → Tr(M) denotes the projection, then Q′ ⊂ ker(π) (this follows from

the definition of a projective cover). We have P ∗0 ³ ker(π) and therefore if Q2 is the projective cover of

ker(π) = ker(π|Q1) then P ∗0 ∼= Q2 ⊕Q′′ for some Q′′. This yields a commutative diagram

Q2
//

²²

Q1
//

²²

Tr(M) // 0

Q2 ⊕Q′′
β∗

//

OO

Q1 ⊕Q′ //

OO

Tr(M) // 0

where the top row is a minimal presentation of Tr(M) and the vertical maps are the projections and inclusions.

The map β∗ can be written as a matrix
(

a b
c d

)
, where we regard elements of the direct sums as column vectors.

Commutativity of the diagram implies that c = d = 0. Thus, β = (β∗)∗ =
(

a∗ 0
0 d∗

)
: Q∗

1⊕(Q′)∗ → Q∗2⊕(Q′′)∗

and M = cok(β) = cok(a∗) ⊕ cok(d∗). But M is indecomposable, so either Q∗2 or (Q′′)∗ surjects onto M .

These are both projective submodules of P0, which is the smallest projective module which surjects onto M .
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Thus, either Q2 = 0 or Q′′ = 0. In either case, we obtain Q′ = 0 as well, and so (2) is a minimal presentation

of Tr(M), as required. Thus, by definition, Tr(Tr(M)) ∼= cok((β∗)∗) = cok(β).

For the last part, suppose Tr(M) = X ⊕ Y . It is an exercise to show that if PX → X and PY → Y are

projective covers, then PX ⊕ PY → X ⊕ Y is also a projective cover. Thus, if

P1

β
// P0

// M // 0

is a minimal presentation of M , then because we have shown that (2) is a minimal presentation of Tr(M),

it follows that (2) has the form

QX ⊕QY → PX ⊕ PY → X ⊕ Y → 0.

Thus, β is given by a matrix
(

x 0
0 y

)
, where x : P ∗X → Q∗

X and y : P ∗Y → Q∗
Y , and M = cok(β) is decomposable,

a contradiction. ¤

Example 19.4. Let A = kQ where Q is the quiver • // • . Label the vertices 0 // 1 . There are

three indecomposable A–modules; the simples S0 and S1, and the projective cover P0 = k
1 // k of S0.

Since S1 and P0 are projective, the only module with a nontrivial Auslander-Reiten translate is S0. In order

to calculate τS0, we begin with the following minimal presentation of S0

0 → S1 → P0 → S0 → 0.

Now S1 = Ae1 and so HomA(S1, A) = HomA(Ae1, A) ∼= e1A. Similarly, HomA(S0, A) = e0A. So Tr(S0) =

cok(e0A → e1A). This has dimension vector dim(e1A)− dim(e0A) = (1, 1)− (1, 0) = (0, 1). Taking the dual

just means reversing the arrows, so we also have dim(τS0) = (0, 1) and therefore τS0 = S1.

20. Lecture 20

In order to understand Auslander-Reiten sequences, we need to look at them from a different viewpoint.

In this lecture, we will introduce almost-split sequences (which are short exact sequences which satisfy an a

priori stronger property) and then show that they are the same as AR sequences.

20.1. Almost-split and minimal morphisms.

Definition 20.1. f : M → N is called left almost-split if f is not a split monomorphism and if

M
f

//

u

²²

N

M ′

with u not a split monomorphism, then there exists a u′ : N → M ′ with u′f = u.
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Dually, g : M → N is called right almost-split if g is not split epi and if

N ′

v

²²
M

g
// N

with v not split epi, then there exists v′ : N ′ → M with gv′ = v.

We also have the notion of minimality.

Definition 20.2. f : M → N is called left minimal if for all h : N → N with hf = f , we have h is an

isomorphism.

Dually, g : M → N is called right minimal if for all h : M → M with gh = g, we have h is an

isomorphism.

Finally, we say that f : M → N is left minimal almost-split if f is left minimal and left almost-split.

Similarly, we have the notion of right minimal almost-split. In the lectures, I often abbreviated these to

l.m.a.s and r.m.a.s.

The notion of minimal morphism is rather intuitive, but the notion of almost-split morphism is rather

mysterious. One way of looking at it is as a kind of non-split morphism which nevertheless behaves a bit

like a split morphism. Indeed, if we dropped the requirement “f is not split mono” from the definition of

left almost-split, then any split monomorphism would be left almost-split. Similarly for right almost-split.

Lemma 20.3. If g : M → N is right almost-split then N is indecomposable.

If f : M → N is left almost-split then M is indecomposable.

Proof. Suppose g : M → N is right almost-split and N = N1 ⊕ N2 with Ni 6= 0. Then the insertion maps

ij : Nj ↪→ N1 ⊕N2 are not split epi, and so there exists v1 : N1 → N with gv1 = i1 and v2 : N2 → N with

gv2 = i2. A simple computation then shows that g(v1 + v2) = idN , which contradicts that g is not split epi.

The proof of the other part is the dual argument (reverse all arrows). ¤

Lemma 20.4. If g : M → N is left minimal almost-split or right minimal almost-split then g is irreducible.

Proof. If g : L → M is right-minimal almost-split then M is indecomposable by the previous lemma, and g

is not split epi by definition. If g is split mono then M ∼= L ⊕ cok(g) and so g would be an isomorphism,

hence split epi, a contradiction. So g is neither split epi nor split mono.

Now suppose g = g1g2 where

L
g

//

g2 ÂÂ@
@@

@@
@@

M

N

g1

>>}}}}}}}}
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and g1 is not split epi. Then there exists v : N → L with gv = g1. Then gvg2 = g1g2 = g and so by

minimality, vg2 : L → L is an automorphism. Thus, g2 is split mono.

The argument for g left-minimal almost-split is dual, again. ¤

Definition 20.5. A short exact sequence

0 // X
f

// M
g

// Y // 0

is called an almost split sequence if f is left minimal almost-split and g is right minimal almost-split.

We shall see later that being left or right minimal almost-split is a strictly stronger condition than being

irreducible (and that proving the existence of left or right minimal almost-split morphisms is quite hard).

Nevertheless, we have the following remarkable theorem.

Theorem 20.6. A short exact sequence is almost split if and only if it is an AR sequence.

Proof. We have just shown that every almost split sequence is AR because minimal almost-split morphisms

are irreducible, and the end terms are indecomposable by Lemma 20.3.

Suppose

0 // M ′′
f

// M
g

// M ′ // 0

is an AR sequence. We wish to show that g is right minimal almost-split. To this end, suppose v : N → M ′

is not split epi. Consider the diagram

0 // M ′′
f

// M
g

// M ′ // 0

0 // M ′′ N

v

OO

// 0.

It is a standard fact from homological algebra that the bottom row can be completed to a short exact

sequence. Namely, let U be the pullback

U := {(m,n) ∈ M ⊕N |gm = vn}.

Then there are maps α, β, γ such that the following diagram commutes, and the bottom row is exact.

0 // M ′′
f

// M
g

// M ′ // 0

0 // M ′′
γ

// U

α

OO

β
// N

v

OO

// 0.

If you haven’t seen this before, you should work out explicitly what these maps are and check exactness.

But it doesn’t matter; all that matters is that such maps exist and that the bottom row is exact.

From the diagram, we have f = αγ. Since f is irreducible, either α is split epi or γ is split mono.
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If γ is split mono then the bottom sequence splits, and so there exists λ : N → U with βλ = idN . So

gαλ = vβλ = v.

If α is split epi, then there exists λ : M → U with αλ = idM . So vβλ = gαλ = g. Therefore, we have

g = vβλ and v is not split epi. Since g is irreducible, βλ must be split mono. So there exists ξ : N → M

with ξβλ = idM . Thus, the following short exact sequence splits

0 // M
βλ

// N // cok(βλ) // 0

and N ∼= M ⊕ cok(βλ). Assume N is indecomposable. Then βλ is an isomorphism. Therefore, g(βλ)−1 =

vβλ(βλ)−1 = v.

We have shown that if N is indecomposable and v : N → M ′ is not split epi then there exists v′ : N → M

with gv′ = v. Now let N be arbitrary and v : N → M ′ not split epi. Then N =
⊕

Ni where the Ni are

indecomposable. If vi : Ni → M ′ denotes the restriction of v to Ni, then vi is not split epi and so there

exists v′i : Ni → M with gv′i = vi. Then g
∑

v′i =
∑

vi = v as desired. So g is right almost-split.

Now we show that g is right minimal. Suppose h : M → M with gh = g. Then we have the following

diagram.

0 // M ′′
f

// M
g

// M ′ // 0

0 // M ′′
f

// M

h

OO

g
// M ′ // 0

An easy diagram chase yields a map β : M ′′ → M ′′ such that the following diagram commutes. (Don’t

believe me? Check it yourself!)

0 // M ′′
f

// M
g

// M ′ // 0

0 // M ′′
f

//

β

OO

M

h

OO

g
// M ′ // 0

Since g is irreducible and gh = g but g is not split epi, we get that h is split mono. Thus, hf is a

monomorphism and so if x ∈ M ′′ with β(x) = 0 then fβ(x) = hf(x) = 0 =⇒ x = 0. Thus, β is a

monomorphism. By finite-dimensionality, β is an isomorphism. Therefore, h is also an isomorphism by the

five lemma.

We have shown that g is right minimal almost-split. The proof that f is left minimal almost-split is, as

usual, the dual argument. Thus, the given sequence is almost split. ¤

Lemma 20.7. If 0 → X → M → Y → 0 and 0 → X ′ → M ′ → Y ′ → 0 are almost split sequences, then the

following are equivalent.
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(1) The two sequences are isomorphic (ie. there is a commutative diagram of the following form with

the vertical maps isomorphisms).

0 // X // M // Y // 0

0 // X ′

OO

// M ′

OO

// Y ′

OO

// 0

(2) X ∼= X ′.

(3) Y ∼= Y ′.

Proof. Suppose Y is a module and g : M → Y , g′ : M ′ → Y are right minimal almost-split morphisms.

Then there exists u : M ′ → M with gu = g′ and there exists v : M → M ′ with g′v = g. So guv = g and

g′vu = g′. Thus, uv and vu are isomorphisms, by minimality. It follows that u and v are isomorphisms. The

five lemma now yields an isomorphism ker(g′) → ker(g) making the following diagram commute.

0 // ker(g) // M
g

// Y // 0

0 // ker(g′)

OO

// M ′

OO

g′
// Y // 0

This shows that any two almost-split sequences ending in the same module Y are isomorphic, which is the

statement (3) =⇒ (1). The proof that (2) =⇒ (1) is similar. ¤

Lemma 20.7 is the uniqueness part of the Auslander-Reiten Theorem: an AR sequence is determined

uniquely by either of its end terms. Notice that we had to use the notion of almost-split sequence instead of

AR sequence in order to prove it.

The proof of Lemma 20.7 contains the following statement, which is a very useful observation which is

worth singling out.

Lemma 20.8. If X is any module then there is, up to isomorphism, at most one right minimal almost-split

morphism g : M → X (meaning that if g′ : N → X is any other right minimal almost-split morphism then

there is an isomorphism N → M making the following diagram commute).

M
g

// X

N

OO

g′

>>}}}}}}}}

Dually, there is at most one left minimal almost-split morphism f : X → M ′.

20.2. Identifying almost-split sequences. Sometimes it is useful to have other characterisations of

almost-split sequences, in order to reduce the amount of work needed to check that a given sequence is

almost split. Here is one.
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Theorem 20.9. A short exact sequence

0 // X
f

// M
g

// Y // 0

is almost-split if and only if g is right almost-split and X is indecomposable if and only if (dually) f is left

almost-split and Y is indecomposable.

Proof. Suppose g is right almost-split and X is indecomposable. We need to show that g is right minimal,

and then show that f is left minimal almost-split.

To show that g is right-minimal, suppose that h : M → M with gh = h. Then, as in earlier proofs in this

lecture, there exists β : X → X making the following diagram commute.

0 // X
f

// M
g

// Y // 0

0 // X

β

OO

f
// M

h

OO

g
// Y // 0

We want to show that h is an isomorphism. If β is an isomorphism, then h is an isomorphism by the five

lemma. Suppose β is not an isomorphism. We want to reach a contradiction. Since X is indecomposable,

Fitting’s Lemma implies that β is nilpotent, so βm = 0 for some m. Therefore, hmf = fβm = 0. Therefore,

hm(ker(g)) = 0 and so there exists u : Y → M with ug = hm (the existence of such a u is just the First

Isomorphism Theorem). Since gh = g, we get gug = ghm = g and so (gu− 1Y )g = 0. Since g is surjective,

this gives gu = 1Y and so g is split epi, which contradicts that g is right almost-split. Therefore, h must be

an isomorphism, and so g is minimal.

The above argument was taken from [ASS06]. At this point, I ran out of time and so the rest of the proof

will be given in the next lecture. ¤

21. Lecture 21

Last time I was in the middle of trying to prove a theorem, but we’ll get back to that.

Recall that last time we proved that almost split sequences = AR sequences. We also proved that an

almost-split sequence is uniquely determined by each of its end terms. This is the uniqueness part of the

Auslander-Reiten Theorem. The existence part is the following.

Theorem 21.1 (Auslander-Reiten). If X is indecomposable and not projective then there exists an AR

sequence

0 → τX → M → X → 0

and dually, if Y is indecomposable and not injective then there exists an AR sequence

0 → Y → N → τ−1Y → 0

where τ−1Y := Tr(DY ).
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Proof. We don’t give the full proof, but just a sketch of the proof given in [ASS06], because some aspects of

this proof are very important.

The proof relies on the fact that if X,Y are modules then Ext1A(X, Y ) may be identified with the space

of equivalence classes of short exact sequences of the form

0 → Y → Z → X → 0.

Nobody in the class had seen this before, so I give a brief explanation. We define an equivalence relation on

short exact sequences of the form δZ := 0 → Y → Z → X → 0 by δZ ∼ δW if there exists an isomorphism

Z → W making the following diagram commute.

Z

²²

ÃÃA
AA

AA
AA

A

0 // Y

>>}}}}}}}}

ÃÃA
AA

AA
AA

A X // 0

W

>>}}}}}}}}

There is an addition on the set of equivalence classes given by Baer sum. If δZ := 0 → Y → Z → X → 0

and δW := 0 → Y → W → X → 0 are short exact sequences, then we form their direct sum

0 → Y ⊕ Y → Z ⊕W → X ⊕X → 0

and then take the pullback along the diagonal map ∆ : Y → Y ⊕ Y followed by the pushout along the

addition map X ⊕X → X, to get a short exact sequence that begins with Y and ends with X. This makes

the set of equivalence classes of short exact sequences into an abelian group with identity element the class

of the split sequence 0 → Y → Y ⊕X → X → 0. This group happens to be isomorphic to Ext1A(X,Y ) (this

is in fact the reason for the name Ext). Therefore, Ext1A(X, Y ) is a vector space. The scalar multiplication

is given explicitly as follows. If λ ∈ k \ {0} and δZ := 0 // Y
f

//// Z
g

// X // 0 is a short

exact sequence, then λ[δZ ] is the class of the sequence 0 // Y
λf

//// Z
g

// X // 0 . All these

facts are proved in [Rot09], and I would recommend having a look at that book.

Anyway, back to the proof. A homological algebra argument can be used to show that for any two modules

M and N , there is an isomorphism of vector spaces

Ext1A(M, N) ∼= DHom(τ−1N,M),

where D denotes the linear dual as before, and Hom(X, Y ) is the quotient space of Hom(X, Y ) by the

subspace of all maps X → Y which factor through a projective module. The space Hom(X, Y ) can be zero,

for example if one of the modules X, Y happens to be projective.

If X is non-projective and indecomposable, then the above formula gives an isomorphism

Ext1A(X, τX) ∼= DHom(X, X),
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because τ−1τ(X) ∼= Tr(Tr(X)) ∼= X. Now, the space Hom(X, X) is not 0, because the identity map

idX : X → X does not factorise through a projective. Indeed, you can check that if idX does factor through

some projective P , then X is a summand of P and so X is projective.

Thus, for X indecomposable and nonprojective, idX defines a nonzero element of Ext1A(X, τX), which

yields an exact sequence

0 → τX → M → X → 0

for some M . To finish the proof, one can show that this is an AR sequence via further arguments using

homological algebra. ¤

Corollary 21.2. If X is a non-projective brick then any non-split sequence 0 → τX → M → X → 0 is an

AR sequence.

Proof. If X is a brick then by definition End(X) = k. So dimDHom(X,X) = 1 = dimExt1A(X, τX). Any

non-split short exact sequence 0 → τX → M → X → 0 defines a non-zero element of Ext1A(X, τX), and

hence is a scalar multiple of an AR sequence, and therefore is itself an AR sequence. ¤

Example 21.3. This is a continuation of Example 19.4.

Let Q = •0 // •1 . We showed that τS0 = S1. Since S0 is a brick and there is a nonsplit sequence

0 → S1 → P0 → S0 → 0, this sequence must be an AR sequence. It is the only AR sequence over kQ.

21.1. Proof of Theorem 20.9. Let 0 // X
f

// M
g

// Y // 0 be a short exact sequence

with X indecomposable and g right almost-split. We already showed that g is right minimal. Now we have

to show that f is left minimal almost-split.

By the Auslander-Reiten Theorem, there exists an AR sequence 0 // X ′
f ′

// M ′
g′

// Y // 0 .

By Lemma 20.8, there is an isomorphism M ′ → M . We can then find a map β between the kernels of g′

and g so that the following diagram commutes.

0 // X ′

β

²²

f ′
// M ′

²²

g′
// Y // 0

0 // X
f

// M
g

// Y // 0

The five lemma implies that β is an isomorphism, and therefore f is left minimal almost split since f ′ is.

This completes the proof of the theorem.

21.2. The middle term of an AR sequence. We are almost ready to start calculating examples of AR

quivers. Before that, we need to understand the middle term of an AR sequence.

The following lemma explains the relationship between irreducible and minimal almost-split morphisms.

Lemma 21.4. Let Y be indecomposable and non-projective and let f : X → Y . Then the following are

equivalent.
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(1) f is irreducible.

(2) There exists f ′ : X ′ → Y such that f + f ′ : X ⊕X ′ → Y is right minimal almost-split.

Note: The map f + f ′ is defined by (f + f ′)(x, x′) = f(x) + f ′(x′). It is also often denoted (f, f ′).

Proof. (1) =⇒ (2). Suppose f is irreducible. By the AR Theorem, there exists g : M → Y with g right

minimal almost-split. Since f is not split epi, the right minimal almost-splitness of g implies that there exists

t : X → M with f = gt. Since g is not split epi, t must be split mono. Therefore, the sequence

0 // X
t // M // cok(t) // 0

splits. We take X ′ = cok(t). Then M ∼= X ⊕X ′ and g may be written as f + u : X ⊕X ′ → Y .

(2) =⇒ (1). Suppose g = f + f ′ : X ⊕X ′ → Y is right minimal almost-split. We want to show that f is

irreducible. If f is split epi then so is g, so f cannot be split epi. If f is split mono then Y is decomposable,

so f cannot be split mono. Now suppose f = ab with a not split epi, where

X

b ÃÃ@
@@

@@
@@

f
// Y

Z

a

??~~~~~~~

Then since a is not split epi, there exists λ : Z → X ⊕X ′ with gλ = a. Now you can check explicitly that

the following diagram commutes.

X ⊕X ′

(
b 0
0 1X′

)

//

f+f ′ %%KKKKKKKKKKK
Z ⊕X ′

a+f ′

²²

λ+1X′ // X ⊕X ′

f+f ′yysssssssssss

Y

By minimality of g = f + f ′, (λ + 1X′) ◦ (
b 0
0 1X′

)
must be an isomorphism. If we write λ = ( u

v ), we conclude

that ub : X → X is an isomorphism, so b must be split mono. Therefore, f is irreducible. ¤

The dual of the above lemma is also true. Together the lemma and its dual say that irreducible morphisms

to or from indecomposables are precisely the components of minimal almost-split morphisms.

Now here is the important result, which we will prove next time.

Theorem 21.5. [ASS06, Corollary 4.4] Suppose

0 // X
f

// M // Y // 0

is an AR sequence. Let M =
⊕

Mni
i where the Mi are pairwise nonisomorphic indecomposable modules.

Write f as

(
f1

...
fk

)
where fi : X → Mni

i and for each i write fi =

(
fi1

...
fini

)
where fij : X → Mi.

77



Then fij ∈ rad(X,Mi) for all i and the images of the fij in Irr(X, Mi) := rad(X, Mi)/rad2(X,Mi) form

a basis for each i. Furthermore, if M ′ is an indecomposable module and Irr(X, M ′) 6= 0 then M ′ ∼= Mi for

some i.

The above theorem, together with its dual, say the following. If

0 // X
f

// M
g

// Y // 0

is an AR sequence, then

M ∼=
⊕

M′ indec
Irr(X,M ′)6=0

(M ′)dimIrr(X,M ′) ∼=
⊕

N′ indec
Irr(N ′,Y )6=0

(N ′)dimIrr(N ′,Y )

But remember that the number dimIrr(X,Y ) is (by definition) just the number of arrows from X to Y

in the AR quiver. Therefore, the information contained in the AR quiver is precisely the modules, but

not the morphisms, in every AR sequence over our algebra. Writing down the AR quiver is precisely

equivalent to writing down a list of all the AR sequences. It’s just that the quiver is a more compact

way of recording the information, and also can be viewed as a kind of picture of the module category itself.

22. Lecture 22

22.1. Proof of Theorem 21.5. Let

0 // X
f

// M
g

// Y // 0

be an AR sequence. Since f is left minimal almost-split, we get that fij is irreducible for all i, j, and so

fij ∈ rad(X,Mi) \ rad2(X,Mi).

If M ′ is indecomposable and Irr(X, M ′) 6= 0 then there is an irreducible map a : X → M ′. Thus, there is

a module M ′′ and a′′ : X → M ′′ such that ( a
a′′ ) : X → M ′ ⊕M ′′ is left minimal almost-split. Uniqueness of

left minimal almost-split morphisms from X implies that M ′ ⊕M ′′ ∼= M . Thus, M ′ is an indecomposable

summand of M , so is isomorphic to one of the Mi.

All that remains is to show that for a fixed Mi, {f i1, . . . , f ini
} is a basis of Irr(X,Mi), where f ij denotes

the image of fij in Irr(X, Mi) = rad(X, Mi)/rad2(X,Mi). Let u ∈ rad(X, Mi). We want to show that u is a

linear combination of the fij modulo rad2(X, Mi). First, u is not split mono because otherwise u could not

be in the radical, by definition of the radical. So we have a diagram

X

u

²²

f
// M

Mi

with u not split mono, and therefore there exists t : M → Mi with tf = u. Since M =
⊕

i Mni
i , we may

write t as (t1, . . . , tk) with tj : M
nj

j → Mi. We may also write tj as (tj1, . . . , tjnj ) with tjr : Mj → Mi.
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Then u = tf implies u =
∑

j

∑nj

p=1 tjpfjp. Now, if j 6= i then tjp is not an isomorphism since Mi � Mj by

definition. So tjp ∈ rad(Mj ,Mi). Therefore, tjpfpj ∈ rad2(X, Mi) and so, modulo rad2, we obtain

u =
ni∑

p=1

tipfip.

Now tip ∈ End(Mi) = kid + rad(Mi,Mi) since the base field k is algebraically closed and the module Mi is

indecomposable. Thus, modulo rad2, u =
∑ni

p=1 tipfip =
∑

p λipfip with λip scalars, as required.

We have shown that {f ij} are a spanning set of Irr(X, Mi). Now we need to show that they are linearly

independent. Suppose
∑

λijf ij = 0.

Then
∑

λijfij ∈ rad2(X, Mi). If some λij 6= 0 then the map γ : Mni
i → Mi defined by (xi) 7→

∑
λijxi is

split epi (a splitting is x 7→ (0, . . . , 0, λ−1
ij x, 0 . . . , 0)). Now,

∑
j λijfij = γfi is irreducible. This is because,

since fi is a component of a minimal left almost-split morphism, so is γfi. Thus,
∑

j λijfij /∈ rad2(X, Mi),

a contradiction. So we must have λij = 0 for all i and j. This completes the proof.

Remark 22.1. It is also worth stating the dual of Theorem 21.5:

if

0 // X
f

// M
g

// Y // 0

is an AR sequence and M =
⊕

Mni
i with the Mi pairwise nonisomorphic indecomposables, and g =

(g1, · · · , gk) with gi : Mni
i → Y , and gi = (gi1, . . . , gini) where gij : Mi → Y , then the images gij ,

1 ≤ j ≤ ni, form a basis of Irr(Mi, Y ) for each i, and if M ′ is indecomposable with Irr(M ′, Y ) 6= 0 then M ′

is isomorphic to one of the Mi.

22.2. The Auslander-Reiten quiver. To recap: the AR quiver is defined as the quiver with

• vertices = isomorphism classes [X] of indecomposables.

• # arrows [X] → [Y ] = dimIrr(X, Y ).

• τ : {vertices} → {vertices} a partially-defined function given by τ [X] = [τX] for X not projective.

Definition 22.2. A (possibly inifinite) quiver Q is called a translation quiver if

(1) Q has no loops.

(2) Q is locally finite, ie. each vertex x of Q has only finitely many arrows going into it and only finitely

many arrows coming out of it.

(3) There is a bijection τ : Q0 \ A → Q0 \ B where Q0 denotes the set of vertices of Q and A,B ⊂ Q0,

with the property that if x is a vertex such that τx exists, then for every y, the number of arrows

from y to x equals the number of arrows from τx to y.
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The third condition means that part of the quiver might look like this:

τx

ÃÃA
AA

AA
AA

A

ÃÃA
AA

AA
AA

A

ÃÃA
AA

AA
AA

A xoo_ _ _ _ _ _ _

τy

=={{{{{{{{

=={{{{{{{{

=={{{{{{{{

yoo_ _ _ _ _ _ _

??ÄÄÄÄÄÄÄ

??ÄÄÄÄÄÄÄ

??ÄÄÄÄÄÄÄ

where the dashed arrows represent τ . In other words, τ maps the quiver exactly onto itself, except that some

bits might fall off the edge. In particular, for every x and y, the number of arrows from x → y equals the

number of arrows τx → τy, provided τx and τy are both defined.

The AR quiver of an algebra is a translation quiver. It has no loops, because if f : X → X is irreducible,

then f is either injective or surjective, so f is an isomorphism, a contradiction. It is locally finite, because

the only [Y ] for which there can be an arrow [X] → [Y ] are the indecomposable summands of the middle

term of the AR sequence starting at X, of which there are only finitely many. To show property (3), let

A be the set of projective modules and B the set of injective modules. Then τ : Q0 \ A → Q0 \ B has an

inverse τ−1 := TrD. The statement about the number of arrows is the following proposition.

Proposition 22.3. If X and Y are indecomposable and X is not projective and then there is an isomorphism

of vector spaces

Irr(Y, X) ∼= Irr(τX, Y ).

Proof. We apply Theorem 21.5 and its dual. By the AR Theorem, there is an AR sequence

0 → τX → M → X → 0.

For every Y , the number of times Y occurs as a summand of M equals both the dimension of Irr(Y, X) and

the dimension of Irr(τX, Y ), as required. ¤

23. Lecture 23

Today: only half a lecture. Calculations.

Recap: AR quiver.

• Vertices Q0: {[X]}, set of isomorphism classes of indecomposables.

• # arrows [X] → [Y ] is dim(rad(X, Y )/rad2(X, Y )).

• τ : Q0 \ {projectives} → Q0 \ {injectives}, τ [X] = [τX].

The quiver is locally finite, has no loops and is a translation quiver.

Example 23.1. Calculate the AR quiver of CQ where Q is the quiver

•0 // •1 // •2

Indecomposables correspond to roots, that is, vectors (a, b, c) such that q(a, b, c) := a2 + b2 +c2−ab− bc = 0,

with (a, b, c) a nonzero vector of positive integers. Let us write abc as shorthand for (a, b, c). Then the
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six roots are 100, 010, 001, 110, 011, 111. We need to list the indecomposables. There are three simple

modules: S0 = k // 0 // 0 , S1 = 0 // k // 0 and S2 = 0 // 0 // k . The

module S2 is projective, and we have the projective covers P0 = ( k
1 // k

1 // k ) ³ S0 and P1 =

( 0 // k
1 // k ) ³ S1. Finally there is the injective envelope I1 = k

1 // k // 0 of S1. All

of these modules are indecomposable, and we know by Kac’ Theorem that there is a bijection between

indecomposable modules and roots. So we have the complete list.

Since P0, P1 and S2 are projective, there are only three AR sequences. Also, we know that each inde-

composable X is a brick (see the proof of Gabriel’s Theorem above) and therefore any nonsplit sequence

0 → τX → M → X → 0 is an AR sequence. So we need to calculate the translate of S0, S1 and I1. Let us

begin with S0.

The short exact sequence 0 → P1 → P0 → S0 → 0 is a resolution of S0. We have P1 = Ae1 and P0 = Ae0,

so Tr(S0) is the cokernel of e0A → e1A. Instead of calculating this explicitly, we can calculate its dimension

vector, which is dim(e1A) − dim(e0A) = 110 − 100 = 010. Thus, dim(τS0) = 010 and τS0 = S1. A similar

calculation gives τS1 = S2. Finally, we can calculate τI1 by using the resolution 0 → S2 → P0 → I1 → 0,

and we get dim(τI1) = 111− 100 = 011 so τI1 = P1.

To find the AR sequences, we now just need to write down three nonsplit sequences of the form 0 →
τX → Y → X → 0. The first two of these are easy:

0 → S1 → I1 → S0 → 0

0 → S2 → P1 → S1 → 0

The third one has the form

0 → P1 → something → I1 → 0.

The middle term has dimension vector dim(I1) = dim(P1) = 121. It contains S1 as a summand because we

have just shown that there is an irreducible map from P1 to S1. It cannot contain S0 or S2 as a summand

because Hom(S0, I1) = Hom(S2, I1) = 0. Therefore, the middle term must be P0⊕S1 and the third sequence

is

0 → P1 → P0 ⊕ S1 → I1 → 0.

Notice that we don’t even need to know the maps in this sequence; the Auslander-Reiten Theorem is powerful

enough to say that there must be a nonsplit exact sequence of this form.
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An alternative way of displaying the three sequences calculated above is the AR quiver.

[P0]

!!CC
CC

CC
CC

[P1]

=={{{{{{{{

!!CC
CC

CC
CC

[I1]oo_ _ _ _ _ _ _ _

!!CC
CC

CC
CC

[S2]

=={{{{{{{{
[S1]oo_ _ _ _ _ _ _ _

=={{{{{{{{
[S0]oo_ _ _ _ _ _ _ _

Example 23.2. Now let Q = •0 // •1 •2oo . What changes?

The number of indecomposables is still six, and their dimension vectors are the same, because the roots

depend only on the underlying graph. But they correspond to different modules. We have the three simples

S0, S1, S2 and the projective covers P0 = ( k
1 // k 0oo ) ³ S0 and P2 = ( 0 // k k

1oo ) ³

S2. There is also the injective envelope of S0, S0 ↪→ I0 = ( k
1 // k k

1oo ). Following the same sort

of argument as in the previous example, the AR quiver is as follows.

[P0]

!!CC
CC

CC
CC

[S2]oo_ _ _ _ _ _ _ _

[P1]

=={{{{{{{{

!!CC
CC

CC
CC

[I1]oo_ _ _ _ _ _ _ _

==||||||||

!!CC
CC

CC
CC

[P2]

=={{{{{{{{
[S0]oo_ _ _ _ _ _ _ _

Suppose we had been given this quiver and were asked to write down the AR sequences. We can just read

them off from the quiver. They are:

0 → P0 → I1 → S2 → 0,

0 → P2 → I1 → S0 → 0,

and

0 → P1 → P0 ⊕ P2 → I1 → 0.

24. Lecture 24

24.1. The Grothendieck group. We now take a break from Auslander-Reiten Theory and introduce the

Grothendieck group. This could have been mentioned much earlier, and is quite an important idea.

Definition 24.1. Let A be a finite-dimensional algebra. The Grothendieck group K0(A) is the free abelian

group on the set of isomorphism classes [M ] of finite-dimensional A–modules, modulo the relations [M ] =

[X] + [Y ] whenever there is a short exact sequence 0 → Y → M → X → 0.
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The group K0 can be defined for much more general objects than finite-dimensional algebras. We are

about to show that K0(A) is not very interesting as a group. However, we will also see that it is a useful

computational tool.

Definition 24.2. If M is an A–module and Si is simple, the symbol [M : Si] denotes the number of copies

of Si in a composition series of M .

The number [M : Si] is well-defined, by the Jordan-Hölder Theorem.

Theorem 24.3. K0(A) is a free abelian group on the set {[Si] : Si simple}.

Proof. Let S1, . . . , SN be the simple A–modules. We define a Z–linear map K0(A) → ZN by [M ] 7→ ([M :

Si])N
i=1. This is a well-defined map from the free abelian group on the set of isomorphism classes of A–modules

to ZN . It induces a map on the group K0(A) because if 0 → Y → M → X → 0 is a short exact sequence,

then [M : Si] = [X : Si] + [Y : Si] for any Si. We define a map ZN → K0(A) by (ai)N
i=1 7→

∑
i ai[Si].

The two maps we have defined are mutually inverse, because if M is an A–module then in K0(A) we have

[M ] =
∑

[M : Si][Si]. So K0(A) ∼= ZN . ¤

Definition 24.4. The Cartan matrix of A is the N ×N matrix

C = ([Pi : Sj ])N
i,j=1

where S1, . . . , SN are the simple A–modules and Pi is the projective cover of Si.

Theorem 24.5. If A has finite global dimension then C is invertible.

Proof. The statement that A has finite global dimension is equivalent to saying that every simple module

Si has a finite projective resolution

0 → Qn → · · · → Q1 → Q0 → Si → 0.

By splitting this long exact sequence up into short exact sequences, it is easy to show that in the Grothendieck

group, we get

[Si] =
∑

i

(−1)i[Qi].

Now, each Qi may be written as a direct sum of the Pj , and so we obtain [Si] =
∑

j bij [Pj ] for some bij ∈ Z.

Since [Pj ] =
∑

[Pj : Sk][Sk] and the [Sk] are a Z–basis of K0(A), we get that (bij) · C = I. Thus, C is an

invertible matrix. ¤

Example 24.6. Let A = k[x]/(x2). Then A has one simple module S (to see this, either express A as a

quiver with relations, or write down a composition series for A and observe that there are two composition

factors which are isomorphic to each other). The projective cover of S is A itself. Thus, the Cartan matrix

is the 1× 1 matrix C = (2). This is not invertible, so gldim(A) = ∞.
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24.2. The Coxeter transformation. Now suppose A = kQ is the path algebra of a quiver with no

oriented cycles and with vertex set Q0 = {1, 2, . . . , n}. We have already seen how to calculate the simple

and indecomposable projective modules. If Si denotes the simple module with k at the ith vertex and 0 at

the other vertices, and Pi denotes the projective cover of Si, then for all i, j we have [Pi : Sj ] = cij where

cij denotes the number of paths from i to j. Therefore,

dim(Pi) = (ci1, . . . , cin)T = CT dim(Si)

where C = (cij) is the Cartan matrix.

Also, we have the injective envelope Ii of Si, which is obtained by taking the projective cover of the

corresponding simple for the opposite quiver and then dualising. Its dimension vector is

dim(Ii) = (c1i, . . . , cni)T = Cdim(Si)

Thus, we have

dim(Ii) = −(−C(CT )−1)dim(Pi).

Definition 24.7. If Q is a cycle-free quiver with vertex set {1, 2, . . . , n} and cij denotes the number of paths

in Q from i to j (cii = 1) and C denotes the n× n matrix (cij) then

cox := −C(CT )−1 : Zn → Zn

is called the Coxeter transformation.

For a general algebra A of finite global dimension, we define the Coxeter transformation cox : K0(A) →
K0(A) by cox([Pi]) = −[Ii] where Pi is the projective cover of the ith simple Si, and Ii is the injective

envelope of Si. This makes sense because both {[Pi]} and {[Ii]} form a Z–basis for K0(A). This agrees with

the above definition in the quiver case because it is easy to check that for a path algebra A = kQ, the map

dim : K0(A) → Zn

is an isomorphism. In fact, it is the isomorphism defined in Theorem 24.3.

The reason for being interested in the Coxeter transformation at this point is given by the following

theorem.

Theorem 24.8. If M is a non-projective kQ–module then

dim(τM) = cox(dim(M)).

Proof. Let M be a kQ module and let 0 → Q1 → Q0 → M → 0 be a minimal presentation of M

(Q1 → Q0 is injective because A is hereditary). If P1, . . . , Pn are the indecomposable projectives then
84



Q1 =
⊕

qiPi and Q0 =
⊕

riPi for some qi, ri ≥ 0. Also, we have HomA(Pi, A) = HomA(Aei, A) = eiA and

so dimHomA(Pi, A) = dim(eiA) = dim(Ii). Therefore

dim(τM) = dimHomA(Q0, A)− dimHomA(Q1, A)

=
∑

qidim(Ii)−
∑

ridim(Ii)

=
∑

(qi − ri) · (−cox(dim(Pi)))

= cox
∑

(ri − qi)dim(Pi)

= cox(
∑

ridim(Pi)−
∑

qidim(Pi))

= cox(dim(Q0)− dim(Q1))

= cox(dim(M)).

¤

The above theorem is very useful for calculating the Auslander-Reiten quiver of the path algebra of a

quiver of Dynkin (ADE) type. By Kac’ Theorem, such a quiver has a unique indecomposable module of

dimension r for each root r of the quiver. Since the AR translate of a non-projective indecomposable module

M is indecomposable, Theorem 24.8 enables us to calculate τ without having to do anything except matrix

multiplications. Indeed, for such an M , τM is the unique indecomposable module of dimension cox(dim(M)).

25. Lecture 25

Example 25.1. Compute the AR quiver of CQ where Q is the following quiver

•1

ÃÃ@
@@

@@
@@

•0 •2oo

•3

??~~~~~~~

of type D4.

To do this, we first need to list the indecomposable modules for CQ. The ones we can write down straight

away are the simple, indecomposable projective and indecomposable injective modules. The simple modules

are S0, S1, S2, S3. Only S0 is projective. The others have nontrivial projective covers Pi. Dually, S1, S2 and

S3 are injective, but S0 has a nontrivial injective envelope I0. We have thus found eight indecomposable

modules.

Because Q is a Dynkin quiver, Kac’ Theorem tells us that an indecomposable module is uniquely deter-

mined by its dimension vector, so we will usually identify modules with their dimension vectors. In this
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notation, we write the modules as follows.

S0 =
0

1 0
0

I0 =
1

1 1
1

S1 =
1

0 0
0

P1 =
1

1 0
0

S2 =
0

0 1
0

P2 =
0

1 1
0

S3 =
0

0 0
1

P3 =
0

1 0
1

This is not the complete set of indecomposables, as we shall see. We can find some more by taking the AR

translates of the modules in the above list. The Cartan matrix is

C =




1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1




and the Coxeter transformation is

cox = −C(CT )−1 =




−1 1 1 1

−1 0 1 1

−1 1 0 1

−1 1 1 0




By applying the Coxeter transformation to the dimension vectors of each of the modules found above, we

obtain

τS1 =
0

1 1
1

τS2 =
1

1 0
1

τS3 =
1

1 1
0

τI0 =
1

2 1
1

We have now found 12 distinct indecomposable modules. Looking up the root system of D4, it has 12

positive roots, and thus we have the complete set of indecomposables. The translates of the modules we

haven’t calculated yet are:

τ
(

0
1 1

1

)
= P1 τ

(
1

1 0
1

)
= P2 τ

(
1

1 1
0

)
= P3 τ

(
1

2 1
1

)
= S0.

Now we know τ , we just need to write down the AR sequences.

For S1, we have a sequence

0 → 0
1 1

1
→ (?) → S1 → 0.

The middle term has dimension vector
1

1 1
1

and it cannot have a simple summand because there are no

irreducible maps between two simple modules. From the list of indecomposables, we see that the only
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possibility for this module is I0. A similar argument for S2 and S3 gives the three AR sequences:

0 → 0
1 1

1
→ I0 → S1 → 0

0 → 1
1 0

1
→ I0 → S2 → 0

0 → 1
1 1

0
→ I0 → S3 → 0.

Next, we have an AR sequence

0 → P1 → (?) → 0
1 1

1
→ 0.

The middle term has dimension vector
1

2 1
1

. What can it be? We know from the AR sequences already

calculated that there is an irreducible map
0

1 1
1

→ I0 = τ−1
(

1
2 1

1

)
. Neither of these modules is projective,

and therefore, since dimIrr(X, Y ) = dimIrr(τX, τY ) when X and Y are nonprojective, there is also an

irreducible map P1 = τ
(

0
1 1

1

)
→ 1

2 1
1

. Therefore,
1

2 1
1

is a summand of the middle term (?), and hence

is the whole of the middle term. So we get another three AR sequences.

0 → P1 → 1
2 1

1
→ 0

1 1
1

→ 0

0 → P2 → 1
2 1

1
→ 1

1 0
1

→ 0

0 → P3 → 1
2 1

1
→ 1

1 1
0

→ 0.

There are just two more AR sequences to calculate. Their middle terms are completely determined by the

sequences we have already written down, and we see that they are forced to have the form

0 → S0 → P1 ⊕ P2 ⊕ P3 → 1
2 1

1
→ 0

and

0 → 1
2 1

1
→ 0

1 1
1

⊕ 1
1 0

1
⊕ 1

1 1
0

→ I0 → 0.

Our eight sequences may be recorded in the AR quiver.

[P1]

!!B
BB

BB
BB

BB

[
0

1 1
1

]

ÃÃB
BB

BB
BB

BB

oo_ _ _ _ _ _ _ _ _ [S1]oo_ _ _ _ _ _ _ _

[S0]

@@¡¡¡¡¡¡¡¡¡

ÁÁ>
>>

>>
>>

>>

ºº.
..

..
..

..
..

..
..

..
..

[
1

2 1
1

]
oo_ _ _ _ _ _ _ _

<<yyyyyyyy

""EE
EE

EE
EE

¼¼3
33

33
33

33
33

33
33

33
3

[I0]oo_ _ _ _ _ _ _ _ _

@@¢¢¢¢¢¢¢¢¢

ÁÁ=
==

==
==

==

ºº.
..

..
..

..
..

..
..

..
..

[P2]

==||||||||| [
1

1 0
1

]
oo_ _ _ _ _ _ _ _ _

>>|||||||||

[S2]oo_ _ _ _ _ _ _ _

[P3]

FF°°°°°°°°°°°°°°°°°°° [
1

1 1
0

]
oo_ _ _ _ _ _ _ _ _

FF±±±±±±±±±±±±±±±±±±

[S3]oo_ _ _ _ _ _ _ _
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25.1. The first Brauer-Thrall Theorem. We don’t have time to explore the applications of Auslander-

Reiten theory in detail, but we will explain the following theorem, which Auslander-Reiten theory was

invented to solve. The theorem is called the first Brauer-Thrall theorem because it was a famous conjecture

of Brauer and Thrall.

Theorem 25.2 (Auslander, Reiten). If A is a finite-dimensional algebra and there exists N ∈ N such that

dim(M) < N for all indecomposable A–modules M then A is of finite type.

The theorem shows, for example, that the path algebra of the quiver Q = • //// • is not of finite type,

because it has infinitely many two-dimensional indecomposable modules. However, we already knew this

from Gabriel’s Theorem anyway. The theorem does tell us, however, that kQ has indecomposable modules

of arbitrarily large dimension.

The proof of Theorem 25.2 is taken directly from [ASS06, IV.5]. It uses two lemmas.

Lemma 25.3 (Harada, Sai). Let b ∈ N and let Mi, 1 ≤ i ≤ 2b, be indecomposable modules over a finite-

dimensional algebra A. Suppose the length `(Mi) ≤ b for all i. Suppose there are maps fi : Mi → Mi+1

which are nonisomorphisms.

Then the composition f2b−1f2b−2 · · · f2f1 = 0.

The Harada-Sai lemma is proved with about a page of linear algebra. We won’t give the proof, but it can

be found in [ASS06, IV, 5.2]. The lemma is sensible because the fi in general map Mi to something smaller.

The fi can’t all be injective because there is a bound on the length of the Mi. So you can have a chain of at

most b injective fi, then the next fi must collapse some of Mi down to something smaller, then you could

have another chain of injective ones, and so on. But eventually you are forced to collapse down to zero.

The second lemma is less intuitive.

Lemma 25.4. [ASS06, IV, 5.1] Let M, N be indecomposable modules with Hom(M, N) 6= 0. Let t ∈ N and

assume there is no path in the AR quiver from M to N of length < t.

Then there exist M0 . . . ,Mt indecomposables with M0 = M and there exist irreducible maps fi : Mi−1 →
Mi and a map g : Mt → N such that the composition gft · · · f1 6= 0.

Similarly, there exist indecomposables N0 = N, N1, . . . , Nt and irreducible maps gi : Ni → Ni−1 and

f : M → Nt such that g1 · · · gtf 6= 0.
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The lemma says that we can find a path of length t in the AR quiver from M to a module somewhat close

to N , and a path of length t from a module close to M to N .

[M ]
[Nt],,YYY

??
??

??
?ÄÄ

ÄÄ
Ä
//

//
//

/eeeeee

..
..

..
.ooooooo

//
//

//
/**

[Mt]
[N ],,YYY

Proof. We just prove the second statement, the proof of the first being dual and given in [ASS06]. We prove

the statement by induction on t. Suppose the statement is true for t − 1 and that Hom(M, N) 6= 0. Then

we have a chain of indecomposable modules Ni and irreducible morphisms gi : Ni → Ni−1

Nt−1 → Nt−2 → · · ·N1 → N0 = N

and an f : M → Nt−1 such that g1 · · · gt−1f 6= 0. If f were split epi, then by indecomposability of M , f

would have to be an isomorphism. But then we would have a chain of t− 1 irreducible maps from M to N ,

so there would be a path in the AR quiver of length t− 1 from M to N , a contradiction. Thus, f is not split

epi.

Now there are two cases: either Nt−1 is projective, or it is not.

Suppose first that Nt−1 is not projective. By the Auslander-Reiten Theorem, there exists a right minimal

almost-split morphism θ : L → Nt−1. Since f is not split epi, there is an f ′ : M → L with θf ′ = f . Now write

L =
⊕p

i=1 Li with the Li indecomposable. Then θ = θ1 + · · ·+ θp with θi : Li → Nt−1 and f ′ = (f ′1, . . . , f
′
p)

with f ′i : M → Li. So θf ′ =
∑p

i=1 θif
′
i . Thus, since g1 · · · gt−1f 6= 0, we get

∑
g1 · · · gt−1θif

′
i 6= 0. Therefore,

there is some i with g1 · · · gt−1θif
′
i 6= 0. Now, θi is irreducible because θ was right minimal almost-split, and

so we can take gt = θi and replace f by f ′i , which completes the inductive step.

Now suppose that Nt−1 is projective. Then f is not epic, or it would be a split epimorphism. Since

Nt−1 is an indecomposable projective, it has a unique maximal submodule rad(Nt−1), and we must have

Im(f) ⊂ rad(Nt−1). We have already shown that the inclusion rad(P ) ↪→ P is irreducible if P is an

indecomposable projective module (this is a good exercise if you don’t remember why - it is just a direct

application of the definition of an irreducible map). Write rad(Nt−1) =
⊕

Li with each Li indecomposable.

Then each inclusion Li ↪→ rad(Nt−1) is also irreducible, and therefore we may apply the same argument as

in the first case to obtain the desired result. ¤

26. Lecture 26

Now we will complete the proof of the Brauer-Thrall theorem. It follows from the following stronger

statement.
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Theorem 26.1. Let (Q, ρ) be a quiver with relations and let A = kQ/〈ρ〉. Suppose the quiver Q is connected.

Suppose the AR quiver of Q has a connected component C such that the length `(M) ≤ b for all M in C.

Then C is finite and C is the whole of the AR quiver.

Proof. First, we prove the following statement:

Claim: If M, N are indecomposable A–modules with Hom(M, N) 6= 0 and either M ∈ C or N ∈ C, we

claim that there is a path in the AR quiver from M to N of length ≤ 2b − 1.

In order to see this, assume N ∈ C and suppose there is no path from M to N of length < t := 2b − 1.

Now apply Lemma 25.4. This says that there exists a chain of indecomposable modules Ni and irreducible

maps gi : Ni → Ni−1, and a map f : M → Nt, with N0 := N and g1 · · · gtf 6= 0. Since N ∈ C and there is a

path in the AR quiver from Ni to N , each Ni ∈ C as well. But then `(Ni) ≤ b for all i, and the Harada-Sai

lemma immediately implies that g1 . . . gt = 0 because none of the gi is an isomorphism (they are irreducible

maps). This contradicts g1 · · · gtf 6= 0 and therefore there must be a path from M to N of length 2b − 1.

Similarly, if M ∈ C then we can use the other half of Lemma 25.4 to reach the same conclusion. This

proves the claim.

Now we show that C is the whole of the AR quiver. Suppose N ∈ C. Then there is an indecomposable

projective module P with Hom(P, N) 6= 0 (take a summand of a projective cover of N). So P ∈ C. Now

since A = kQ/〈ρ〉, P = Aei for some vertex i of Q. If j is a vertex such that there is an arrow from j to

i, then Hom(Aei, Aej) ∼= eiAej 6= 0 and therefore Aej ∈ C. Similarly, if there is an arrow from i to j then

Aej ∈ C. Since Q is connected, we conclude that Aej ∈ C for every vertex j of Q. Therefore, C contains

every indecomposable projective. Now if M is any indecomposable module, then there is an indecomposable

projective P ′ with Hom(P ′,M) 6= 0 and since P ′ ∈ C, we get M ∈ C, as required. Thus, C is the whole AR

quiver.

It remains to show that the AR quiver is finite. But the above argument shows that

C =
⋃

P indec projective

{M : dist(M, P ) ≤ 2b − 1}

where dist denotes the shortest path in the underlying graph of the AR quiver. Since there are only finitely

many indecomposable projective modules, this is a finite set. ¤

26.1. Proof of the Brauer-Thrall Theorem. Let A be an algebra with dim(M) ≤ N for all indecom-

posable A–modules M . Then `(M) ≤ N for all indecomposable A–modules M . There exists a quiver with

relations (Q, ρ) such that A is Morita equivalent to kQ/〈ρ〉. Since length is clearly preserved by Morita

equivalence, it follows that `(M) ≤ N for all indecomposable kQ/〈ρ〉–modules M . Now assume that A has

only one block. Then Q is connected, because otherwise kQ/〈ρ〉 would have more than one block. The

previous theorem now implies that kQ/〈ρ〉 has finite type (take C to be the whole AR quiver. Then the

theorem shows that C is finite), and therefore so does A.
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If A has more than one block, then the above argument shows that each block of A has finite type.

Therefore, so does A. This completes the proof.

26.2. Structure of AR quivers. Let us finish the course with some general discussion of what AR quivers

look like, since so far we have only seen a few examples. First we give a theorem (again taken directly from

[ASS06]) which shows that the AR quiver of an algebra of finite type cannot have parallel arrows.

Theorem 26.2. Let A be an algebra of finite type. Then the AR quiver of A has no multiple arrows.

Proof. Suppose M , N are indecomposable A–modules with dimIrr(M,N) ≥ 2. Then there exists an irre-

ducible map f : M → N . Because f is irreducible, f is either injective or surjective, and not both. Suppose

f is injective. The other case is dual, see [ASS06, Proposition 4.9].

If f is injective, then dim(M) < dim(N) and f : M ↪→ N . Therefore, M cannot be injective, or else N

would be isomorphic to M⊕cok(f) and since N is indecomposable, f would be forced to be an isomorphism,

a contradiction. So by the AR Theorem, there exists an AR sequence

0 → M → X → τ−1M → 0

and X ∼= N⊕2 ⊕ U for some U , by the description of the middle term that we had.

Therefore, dim(τ−1M) + dim(M) = 2dim(N) + dim(U) and so dim(τ−1M) ≥ 2dim(N) − dim(M) >

dim(N) > dim(M).

Now, from X = N⊕2 ⊕ U , we get dimIrr(N, τ−1M) ≥ 2, so there is an irreducible map f : N → τ−1M .

This map must be injective since dim(τ−1M) > dim(N). So N is not an injective module. Therefore, there

is an AR sequence

0 → N → Y → τ−1N → 0

and dim(τ−1N) > dim(τ−1M) by the same argument as above.

Continuing inductively we obtain, for every i ≥ 0,

dim(τ−i−1N) > dim(τ−i−1M) > dim(τ−iN) > dim(τ−iM).

Therefore, {τ−iN}, i ≥ 0 is a collection of infinitely many nonisomorphic indecomposables, which contradicts

that A has finite type. ¤

So the AR quiver of an algebra of finite type cannot have multiple arrows. We have also seen that no AR

quiver can have loops. What about cycles? It is possible to have cycles. For example, if A = k[x]/(x2), then

A has just two indecomposable modules, namely A and S := A/xA (we haven’t proved this) and the only

AR sequence is of the form

0 → S → A → S → 0.

Thus, the AR quiver is

[A]
++
[S]kk kk

W
Â

g
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which has a cycle.

For hereditary algebras kQ of finite type, this can’t happen. There are never cycles and the arrows tend

to go from left to right. On the left, we have all the projectives, and on the right all the injectives (look

back at the D4 example computed above). It is a good exercise to show that an algebra is hereditary if and

only if for every indecomposable projective P , if [M ] → [P ] is an arrow in the AR quiver, then M is also

projective. The dual statement for injectives is also true, which explains why all the projectives are at one

end of the AR quiver and all the injectives are at the other.

When we started AR theory, I did mention that one motivation for the AR quiver was as a kind of picture

of the module category. For algebras of finite type, the following theorem shows that it is a good picture.

Theorem 26.3. [ASS06, Corollary 5.6] If A is an algebra of finite type and f : M → N is a nonisomorphism

between indecomposable A–modules, then f is a sum of compositions of irreducible morphisms.

Thus, there is a nontrivial morphism M → N if and only if there is a path from M to N in the AR quiver.

Of course, the AR quiver doesn’t tell us the whole module category because it doesn’t contain information

about how morphisms compose.

27. Lecture 27

What about algebras of infinite type? These fall into two classes, according to the following theorem.

Theorem 27.1 (Drozd). An algebra A of infinite type is either tame or wild.

Tame means that for every N ∈ N, there exists a finite collection M1, . . . , Mp(N) of A − k[x]–bimodules

such that every indecomposable module of dimension < N is isomorphic to Mi ⊗k[x] k[x]/(x − λ) for some

λ ∈ k.

Wild means that there exists an A−k〈x, y〉–bimodule M such that the functor F : k〈x, y〉−mod → A−mod

defined by F (N) = M ⊗k〈x,y〉 N takes nonisomorphic objects to nonisomorphic objects.

Roughly speaking, tame means that although there are infinitely many indecomposables, they fall into

finitely many nice families, each one depending on a parameter. Wild means “at least as bad as k〈x, y〉”
which is bad.

The above theorem is known as Drozd’s tame-wild theorem. It is a very famous result, and people put a

lot of effort into determining whether a given algenra is tame or wild.

For hereditary algebras, this was solved by Nazarova.

Theorem 27.2 (Nazarova). Let Q be a quiver without oriented cycles. Then kQ is tame if and only if Q is

a Dynkin or extended Dynkin quiver.

Nazarova’s Theorem is a generalisation of Gabriel’s Theorem which extends things from the finite type

case to the tame case.
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We have already seen that we can calculate the AR quiver of a Dynkin quiver via a process like the one

we used in our D4 example. So what about an extended Dynkin quiver? Here, too, the AR quiver can be

calculated explicitly. Of course, it is an infinite quiver because the algebra no longer has finite type. We do

not give the proofs, but they can be found in the notes [CB]. Instead, let us describe what happens.

Consider one of the simplest cases, the Ã2 case. This is the quiver • // // • , also known as the

Kronecker quiver. The quadratic form of this quiver is q(α0, α1) = (α0 − α1)2 and the roots are the vectors

with q(α0, α1) ≤ 1. Therefore, the dimension vectors of the indecomposables are (a, a), (a, a − 1) and

(a−1, a) for a ≥ 1. We can get some idea of what the components of the AR quiver are by using the Coxeter

transformation. The Cartan matrix is

C =


1 2

0 1




and the Coxeter transformation is

cox =


3 −2

2 −1




We see that cox ( a
a ) = ( a

a ), and in fact τX = X for every indecomposable X of dimension (a, a). We already

know that there is an indecomposable

k
λ //
µ

// k

for each λ, µ ∈ k, and it is easy to see that these are isomorphic if and only if (λ, µ) = (rλ, rµ) for some

r ∈ k. It can be shown that each of these indecomposables is contained in a unique component of the AR

quiver, and so there are P1 many of these components. They are called tubes.

We also note that cox ( a+1
a ) =

(
a+3
a+2

)
and cox ( a

a+1 ) =
(

a−2
a−1

)
. In fact, all the modules of dimension vector

(a, a + 1) belong to a single component of the AR quiver. It looks like this.

12

ÃÃB
BB

BB
BB

B

ÃÃB
BB

BB
BB

B 34oo_ _ _ _ _ _ _

ÃÃB
BB

BB
BB

B

ÃÃB
BB

BB
BB

B · · ·oo_ _ _ _ _ _ _

01

>>||||||||

>>||||||||

23oo_ _ _ _ _ _ _

>>||||||||

>>||||||||

45oo_ _ _ _ _ _ _ · · ·oo_ _ _ _ _ _ _

It carries on to the right forever. Here, I have used the notation ab as shorthand for a representation of

dimension vector (a, b). It turns out that if a 6= b then there is a unique dimension vector (a, b). Indeed, this

follows from Kac’ Theorem.

In this component, 01 is the projective simple and 12 is the projective cover of the other simple. Thus,

this component of the AR quiver consists of all those indecomposable modules M such that τ iM is projective

for some i. Such modules are called preprojective and this is called the preprojective component.

Dually, there is a preinjective component with the modules 10 and 21 on the left and all arrows going the

other way.
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The modules which are neither preinjective nor preprojective are called regular. Every such module X

has τ iX = X for some i. The smallest such i is called the period. For the Kronecker quiver, every regular

module has period 1.

The above example is worked out in detail in [Hue, Section 5.3].

The picture looks the same for any kQ when Q is a Euclidean quiver. There is a preprojective component,

a preinjective component, and a collection of tubes indexed by P1. The periods of all the modules X in a

given tube are the same, and this common value is called the period of the tube. The periods of different

tubes can be different. A tube of period > 1 looks like this:
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??
??
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??
??
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????ÄÄÄÄÄÄÄ
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??ÄÄÄÄÄÄÄ
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Â
Â
Â
Â
Â

??ÄÄÄÄÄÄÄ
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??ÄÄÄÄÄÄÄ
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??ÄÄÄÄÄÄÄ

OOÂ
Â
Â
Â
Â
Â

??ÄÄÄÄÄÄÄ
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Â
Â

OOÂ
Â
Â
Â
Â
Â

The picture should be thought of as filling the whole of the plane, and the dotted arrows represent the AR

translate. Each point is identified with the point i steps above it. Thus, the graph lies on a cylinder, hence

the name “tube”.
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Exercises 27.3. Some exercises on the Grothendieck group and Auslander-Reiten theory.

(1) Show that gldim(
∧
C2) = ∞.

(2) Let Q be a quiver without cycles and M a CQ–module. Show that M is projective if and only if all

the entries of the vector cox(dim(M)) are non-positive.

(3) Let A = k[x, y]/(x2, xy, y2), a commutative algebra of dimension 3. Show that the following short

exact sequence of A–modules is an AR sequence.

0 // A
f

// A/(x)⊕A/(y)
g

// A/(x, y) // 0

where f(a) = (a, a) and g(p, q) = p− q.

(4) Compute the AR quiver of CQ where Q is the quiver

•1

ÃÃ@
@@

@@
@@

•0 // •2

•3

??~~~~~~~

(5) Let A be a finite-dimensional algebra. Show that the following are equivalent.

(a) A is hereditary.

(b) If M is an indecomposable A–module and there is a projective indecomposable P and an arrow

[M ] → [P ] in the AR quiver of A, then M is projective.
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